Integration of Yolov8 and OCR As E-KTP Data Extraction and Validation Solution for Digital Administration Automation

Autori

  • Lalang Gumirang Universitas Budi Luhur, Indonesia
  • Agung Pramono Universitas Budi Luhur, Indonesia
  • Gandung Triyono Universitas Budi Luhur, Indonesia

##semicolon##

https://doi.org/10.59188/eduvest.v5i11.52365

##semicolon##

YOLOv8##common.commaListSeparator## OCR preprocessing##common.commaListSeparator## e-KTP##common.commaListSeparator## data validation##common.commaListSeparator## object detection##common.commaListSeparator## administrative automation.

Abstrakt

The exchange of personal data in Indonesia remains predominantly manual, involving form-filling and photocopying of electronic identity cards (e-KTP), despite the availability of embedded electronic chips designed for automated data processing. This study proposes an integrated data extraction and validation system combining YOLOv8 for precise region detection and Optical Character Recognition (OCR) with advanced preprocessing techniques for textual information extraction. Unlike previous approaches relying solely on OCR (e.g., Vision AI), this method employs YOLOv8 object detection to accurately localize key fields (NIK, Name, Address) before text extraction, followed by validation through the DUKCAPIL API. The system was evaluated using 20 e-KTP images captured under various conditions. Results demonstrate that the proposed approach achieves an average OCR accuracy of 98.7% with an Intersection over Union (IoU) of 0.975, significantly outperforming baseline Vision AI extraction by 15–20%. All extracted data successfully passed validation against the official DUKCAPIL database, confirming 100% authenticity verification. This system provides an economical and efficient solution for automating population data administration, particularly suitable for small non-governmental organizations with limited budgets. The integration of deep learning-based object detection and preprocessed OCR offers a robust framework for digital identity verification systems.

##submission.citations##

Afdholudin, N., & Hais, Y. R. (2021). Implementasi sistem ekstraksi dan validasi data e-KTP sebagai solusi alternatif otomatisasi sistem administrasi data. Prosiding SNAST 2021, A46–A54.

Anderson, R., & Harsono, T. (2023). E-governance and the risk of fraud in digital identity verification: A study in Indonesian administrative systems. Journal of Digital Administration and Security, 10(2), 214–229. https://doi.org/10.1016/j.jdasec.2023.05.002

Arifin, Z., & Mahmud, M. (2020). The impact of e-KTP implementation on administrative efficiency in Indonesian local government offices. Journal of Public Administration and Technology, 22(3), 56–71. https://doi.org/10.1016/j.jpat.2020.03.005

Awel, M. A., & Abidi, A. I. (2019). Review on optical character recognition. International Research Journal of Engineering and Technology (IRJET), 3666–3669.

Berhandus, C., Ongkowijaya, J. A., & Pandelaki, K. (2021). Hubungan kadar vitamin D dan kadar C-reactive protein dengan klinis pasien Coronavirus Disease 2019. E-CliniC.

Dwi, M., Fitria, H., & Setiawan, A. (2020). Human error in manual data entry: A case study in Indonesian public administration. Journal of Administrative Studies, 15(1), 83–95. https://doi.org/10.1080/001970245.2020.1798537

E. Zhang, dkk. (2022). Improving optical character recognition accuracy for e-KTP via DeblurGAN, shadow removal, and binarization. Journal of Theoretical and Applied Information Technology, 100(8).

Elvandari, M., Briawan, D., & Tanziha, I. (2017). Suplementasi vitamin A dan asupan zat gizi dengan serum retinol dan morbiditas anak 1–3 tahun. Jurnal Gizi Klinik Indonesia.

Fadhil, A., & Kurniawan, S. (2020). Budgetary constraints and infrastructure challenges in small-scale administrative units: The case of Indonesian cooperatives. Journal of Public Sector Finance, 23(4), 312–327. https://doi.org/10.1016/j.jpsf.2020.09.003

Haris, S., & Aziz, R. (2019). Digital identity verification systems: Challenges and opportunities in Indonesia's government administration. Indonesian Journal of Information and Governance, 11(2), 95–110. https://doi.org/10.1016/j.ijig.2019.07.003

Kavery Verma, Prabhakara Rao, A., Kumar, R., & Ranjan, R. (2024). Efficient e-KYC authentication system: Redefining customer verification in digital banking. Artikel riset/konferensi.

Lestari, A. A., & Anggraeni, L. (2021). Manual versus digital methods in identity verification: The case of Indonesia's e-KTP implementation. Journal of Digital Governance, 13(1), 123–136. https://doi.org/10.1108/JDG-10-2020-0097

Oktavia, S. N. (2019). Hubungan kadar vitamin D dalam darah dengan kejadian obesitas pada siswa SMA Pembangunan Padang. Jurnal Akademika Baiturrahim Jambi.

Peng, R. (2024). Federated learning-based YOLOv8 for face detection. Applied and Computational Engineering, 54.

Ruijia Peng. (2024). Federated learning-based YOLOv8 for face detection. Applied and Computational Engineering, 54.

Sutanto, H., Nugroho, A., & Syah, F. (2022). Barriers to e-KTP adoption in small-scale organizations in Indonesia: A technological and economic perspective. Journal of Public Policy and Technology, 18(4), 174–189. https://doi.org/10.2139/ssrn.3592400

Sutrisno, Y., & Nurhadi, M. (2021). The challenges of implementing e-KTP technology in non-governmental organizations and community units in Indonesia. Journal of Public Policy and Technology, 12(3), 101–114. https://doi.org/10.1016/j.jopt.2021.02.005

Wahyudi, I., & Sari, L. A. (2022). Real-time authentication in digital identity verification: Addressing gaps in Indonesian population data administration. International Journal of Digital Systems, 5(1), 56–70. https://doi.org/10.1016/j.ijds.2022.01.004

Widodo, B., Sari, A., & Prasetya, Y. (2021). Manual transcription and error rates: Analysis of data entry challenges in public administration. Journal of Indonesian Public Administration, 19(2), 136–150. https://doi.org/10.1108/JIPA-01-2021-0012

Wijaya, R., & Fadillah, N. (2023). E-KTP implementation in Indonesia: A review of challenges and risks in document forgery and data security. Indonesian Journal of Public Administration, 9(3), 201–215. https://doi.org/10.1177/014920632210978

Yisihak, H. M., & Li, L. (2024). Advanced face detection with YOLOv8: Implementation and integration into AI modules. Open Access Library Journal, 11.

##submission.downloads##

Publikované

2025-11-27