Application of Exponential Smoothing Method for Forecasting Spare Parts Inventory at Heavy Equipment Distributor Company
DOI:
https://doi.org/10.59188/eduvest.v4i3.1079Keywords:
Kobexindo, Forcasting, Exponential Smoothing, Sparepart, MAPE, RSME, PhytonAbstract
PT. Kobexindo Tractors Tbk holds a significant spare parts inventory to meet their customers' needs. Over the period from 2016 to 2023, the company experienced an average annual loss of Rp. 1,176,438,113, due to the inadequate analysis of spare parts demand, which serves as a reference in the procurement process. To address this issue, this research focuses on developing a model that can generate accurate forecasts for spare parts inventory, particularly Jungheinrich parts, to support appropriate management decisions in the procurement process at the company. The Exponential Smoothing method is chosen for its ability to handle data with fluctuating patterns and trends. This study will compare the Simple Exponential Smoothing, Double Exponential Smoothing, and Triple Exponential Smoothing methods. The data ratio used in this research is 70% for training data and 30% for testing data. The prototype development is conducted using the Python programming language. The research results indicate that the Holts Winter Exponential Smoothing Model with Multiplicative Seasonality and Multiplicative Trend (Triple Exponential) is the best method among others, as follows: 1) Train RSME (7.082307), a low RSME value on training data indicates that this model has a small prediction error rate on the data used for training. 2) Test MAPE (6.343268), a low MAPE value on test data indicates that this model provides fairly accurate predictions in percentage terms of the actual values. 3) Test RSME Values (23.160521), a sufficiently low RSME value on test data indicates that this model also successfully generalizes well on unseen data.
References
Assauri, S. (2010). Manajemen Pemasaran: Dasar, Konsep & Strategi. Raja Grafindo Persada. Jakarta
Budiman, I., Prahasto, T., Christyono, Y. (2012). Data Clustering Menggunakan Metodologi Crisp-Dm Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma. Seminar Nasional Aplikasi Teknologi Informasi 2012 (SNATI 2012) ISSN: 1907-5022 Yogyakarta
Darmawan, A.F, Risqiati, Inonu, I. (2018). Penerapan Metode Single Moving Average untuk Peramalan Persediaan Sparepart pada ABE Motor. IC-Tech Volume 13 No.1 April 2018
Hamirsa, M.H., Rumita, R. (2022). Usulan Perencanaan Peramalan (Forecasting) dan Safety Stock Persediaan Spare Part Busi Champion Type RA7YC-2 (EV01/EW-01/2) Menggunakan Metode Time Series pada PT Triangle Motorindo Semarang. Industrial Engineering Online Journal Vol 11 No 1 2023
Han, J.W., Kamber, M. and Pei, J. (2012). Data Mining: Concept and Techniques, Third Edition. Morgan Kaufmann Publishers, Waltham
Handayani, Ririn. 2020, Metodologi Penelitian Kualitatif & Kuantitatif. CV. Pustaka Ilmu, Yogyakarta
Heizer, J., Render, B. (2009). Manajemen Operasi, Buku 1 Edisi 9. Salemba Empat, Jakarta
Herjanto, E. (2010), Manajemen Operasi, ed: Revisi, Gramedia, Jakarta
Iksan, N., Putra, Y.P., Udayanti, E.D. (2018). Regresi Linier untuk Prediksi Permintaan Spare Part Sepeda Motor. ITEJ (Information Tecnology Engineering Journal), Vol 03, No. 02 ISSN : 2548-2157
Indrajit, R.E dan Djokopranoto, R. (2003). Konsep Manajemen Supply Chain, Cara Baru Memandang Mata Rantai Penyediaan Barang. Grassindo, Jakarta
Indriastiningsih, E., Darmawan, S. (2019). Analisa Pengendalian Persediaan Sparepart Motor Honda Beat FI dengan Metode EOQ menggunakan Peramalan Penjualan di Graha Karyaahass XY. Jurnal DINAMIKA TEKNIK, Vol .XII, No. 2 Juli 2019 ISSN: 1412-3339
Kusrini, Luthfi, E.T. (2009), Algoritma Data Mining, CV ANDI OFFSET, Yogyakarta
Maheninda, D.R., Cholissodin, I., Sutrisno (2018). Peramalan Persediaan Sparepart Sepeda Motor Menggunakan Algoritma Backpropagation. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol 2 No.12 Desember 2018, hlm. 6018-6025, ISSN2548-964X
Marlim, Y.N., Hajjah, A. (2021). Sistem Peramalan Persediaan Barang Menggunakan Metode Brown Exponential Smoothing. JOICE Journal Of Information System And Informatics Engineering, Vol 2 No.5 ISSN 2503-5304
Niarto, D., Lau, E.A., Heriyanto (2015). Manajemen Persediaan Suku Cadang Alat Berat PT. United Tractors, Tbk Cabang Samarinda. Jurnal Manajemen dan Akuntansi Fakultas Ekonomi dan Bisnis Universitas 17 Agustus 1945 Samarinda. Vol 5, No 3
Prasetya, H., Lukiastuti, F., Grafika, A. (2009). Manajemen Operasi. Media Pressindo. Yogyakarta
Prasetyawati, M., Marfuah, U., Wijaya, G. (2016). Analisis Pengendalian Kebutuhan Persediaan Suku Cadang di PT. Indotruck Utama Cabang Jakarta. Prosiding SEMNASTEK, ISSN 2460-8416
Putri, M.S., Fujiati (2022). Penerapan Metode Winter Exponential Smoothing dalam Peramalan Pengadaan Suku cadang pada PT. Sumatera Sarana Sekar Sakti. 168.InfoSys Journal, Vol 6 No 2 Februari 2022
Rahmayani, M.T.I. (2018). Analisis Clustering Tingkat Keparahan Penyakit Pasien Menggunakan Algoritma K-means (Studi Kasus di Puskesmas Bandar Seikijang). Jurnal Inovasi Teknik Informatika ,Vol.1, No. 2. September 2018
Ririd, A.R.T.H, Hamdana, E.N, Julyanto, E. (2020). Sistem Informasi dan Peramalan Penjualan Sparepart Menggunakan Metode Triple Exponential Smoothing (Studi Kasus Bengkel Motor Lancar Jaya). SEMINAR INFORMATIKA APLIKATIF POLINEMA (SIAP) ISSN 2460-1160, Malang
Suhendra, C.A, Asfi, M., Lestari, W.J, Syafrinal, I. (2020). Sistem Peramalan Persediaan Sparepart Menggunakan Metode Weight Moving Average dan Reorder Point. MATRIK Jurnal Management, Teknik Informatika, dan Rekayasa Komputer Vol.20 No.02 Mei 2021, pp. 343-354 ISSN:2476-9843, DOI 10.30812/matrik.v20i2.1053
Vulandari, T.V. (2017). Data mining : Teori dan Aplikasi Rapidmaner. Gava Media, Yogyakarta
Yulianty, W., Dewi, S.O., Zainzhilal, A.P.A. (2016). Perencanaan Pengendalian Produksi dan Persediaan Industri Sparepart Fabrikasi. Jurnal LOGIC (Logistics & Supply Chain Center). Vol. 1 No. 1 (2022)
Published
Issue
Section
License
Copyright (c) 2024 Despiyan Dwi Budiarto, Miftahudin, Jan Everhard Riwurohi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.