Application of Exponential Smoothing Method for Forecasting Spare Parts Inventory at Heavy Equipment Distributor Company

Authors

  • Despiyan Dwi Budiarto Program Studi Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia
  • Miftahudin Program Studi Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia
  • Jan Everhard Riwurohi Program Studi Magister Ilmu Komputer, Fakultas Teknologi Informasi, Universitas Budi Luhur, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i3.1079

Keywords:

Kobexindo, Forcasting, Exponential Smoothing, Sparepart, MAPE, RSME, Phyton

Abstract

PT. Kobexindo Tractors Tbk holds a significant spare parts inventory to meet their customers' needs. Over the period from 2016 to 2023, the company experienced an average annual loss of Rp. 1,176,438,113, due to the inadequate analysis of spare parts demand, which serves as a reference in the procurement process. To address this issue, this research focuses on developing a model that can generate accurate forecasts for spare parts inventory, particularly Jungheinrich parts, to support appropriate management decisions in the procurement process at the company. The Exponential Smoothing method is chosen for its ability to handle data with fluctuating patterns and trends. This study will compare the Simple Exponential Smoothing, Double Exponential Smoothing, and Triple Exponential Smoothing methods. The data ratio used in this research is 70% for training data and 30% for testing data. The prototype development is conducted using the Python programming language. The research results indicate that the Holts Winter Exponential Smoothing Model with Multiplicative Seasonality and Multiplicative Trend (Triple Exponential) is the best method among others, as follows: 1) Train RSME (7.082307), a low RSME value on training data indicates that this model has a small prediction error rate on the data used for training. 2) Test MAPE (6.343268), a low MAPE value on test data indicates that this model provides fairly accurate predictions in percentage terms of the actual values. 3) Test RSME Values (23.160521), a sufficiently low RSME value on test data indicates that this model also successfully generalizes well on unseen data.

References

Assauri, S. (2010). Manajemen Pemasaran: Dasar, Konsep & Strategi. Raja Grafindo Persada. Jakarta

Budiman, I., Prahasto, T., Christyono, Y. (2012). Data Clustering Menggunakan Metodologi Crisp-Dm Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma. Seminar Nasional Aplikasi Teknologi Informasi 2012 (SNATI 2012) ISSN: 1907-5022 Yogyakarta

Darmawan, A.F, Risqiati, Inonu, I. (2018). Penerapan Metode Single Moving Average untuk Peramalan Persediaan Sparepart pada ABE Motor. IC-Tech Volume 13 No.1 April 2018

Hamirsa, M.H., Rumita, R. (2022). Usulan Perencanaan Peramalan (Forecasting) dan Safety Stock Persediaan Spare Part Busi Champion Type RA7YC-2 (EV01/EW-01/2) Menggunakan Metode Time Series pada PT Triangle Motorindo Semarang. Industrial Engineering Online Journal Vol 11 No 1 2023

Han, J.W., Kamber, M. and Pei, J. (2012). Data Mining: Concept and Techniques, Third Edition. Morgan Kaufmann Publishers, Waltham

Handayani, Ririn. 2020, Metodologi Penelitian Kualitatif & Kuantitatif. CV. Pustaka Ilmu, Yogyakarta

Heizer, J., Render, B. (2009). Manajemen Operasi, Buku 1 Edisi 9. Salemba Empat, Jakarta

Herjanto, E. (2010), Manajemen Operasi, ed: Revisi, Gramedia, Jakarta

Iksan, N., Putra, Y.P., Udayanti, E.D. (2018). Regresi Linier untuk Prediksi Permintaan Spare Part Sepeda Motor. ITEJ (Information Tecnology Engineering Journal), Vol 03, No. 02 ISSN : 2548-2157

Indrajit, R.E dan Djokopranoto, R. (2003). Konsep Manajemen Supply Chain, Cara Baru Memandang Mata Rantai Penyediaan Barang. Grassindo, Jakarta

Indriastiningsih, E., Darmawan, S. (2019). Analisa Pengendalian Persediaan Sparepart Motor Honda Beat FI dengan Metode EOQ menggunakan Peramalan Penjualan di Graha Karyaahass XY. Jurnal DINAMIKA TEKNIK, Vol .XII, No. 2 Juli 2019 ISSN: 1412-3339

Kusrini, Luthfi, E.T. (2009), Algoritma Data Mining, CV ANDI OFFSET, Yogyakarta

Maheninda, D.R., Cholissodin, I., Sutrisno (2018). Peramalan Persediaan Sparepart Sepeda Motor Menggunakan Algoritma Backpropagation. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol 2 No.12 Desember 2018, hlm. 6018-6025, ISSN2548-964X

Marlim, Y.N., Hajjah, A. (2021). Sistem Peramalan Persediaan Barang Menggunakan Metode Brown Exponential Smoothing. JOICE Journal Of Information System And Informatics Engineering, Vol 2 No.5 ISSN 2503-5304

Niarto, D., Lau, E.A., Heriyanto (2015). Manajemen Persediaan Suku Cadang Alat Berat PT. United Tractors, Tbk Cabang Samarinda. Jurnal Manajemen dan Akuntansi Fakultas Ekonomi dan Bisnis Universitas 17 Agustus 1945 Samarinda. Vol 5, No 3

Prasetya, H., Lukiastuti, F., Grafika, A. (2009). Manajemen Operasi. Media Pressindo. Yogyakarta

Prasetyawati, M., Marfuah, U., Wijaya, G. (2016). Analisis Pengendalian Kebutuhan Persediaan Suku Cadang di PT. Indotruck Utama Cabang Jakarta. Prosiding SEMNASTEK, ISSN 2460-8416

Putri, M.S., Fujiati (2022). Penerapan Metode Winter Exponential Smoothing dalam Peramalan Pengadaan Suku cadang pada PT. Sumatera Sarana Sekar Sakti. 168.InfoSys Journal, Vol 6 No 2 Februari 2022

Rahmayani, M.T.I. (2018). Analisis Clustering Tingkat Keparahan Penyakit Pasien Menggunakan Algoritma K-means (Studi Kasus di Puskesmas Bandar Seikijang). Jurnal Inovasi Teknik Informatika ,Vol.1, No. 2. September 2018

Ririd, A.R.T.H, Hamdana, E.N, Julyanto, E. (2020). Sistem Informasi dan Peramalan Penjualan Sparepart Menggunakan Metode Triple Exponential Smoothing (Studi Kasus Bengkel Motor Lancar Jaya). SEMINAR INFORMATIKA APLIKATIF POLINEMA (SIAP) ISSN 2460-1160, Malang

Suhendra, C.A, Asfi, M., Lestari, W.J, Syafrinal, I. (2020). Sistem Peramalan Persediaan Sparepart Menggunakan Metode Weight Moving Average dan Reorder Point. MATRIK Jurnal Management, Teknik Informatika, dan Rekayasa Komputer Vol.20 No.02 Mei 2021, pp. 343-354 ISSN:2476-9843, DOI 10.30812/matrik.v20i2.1053

Vulandari, T.V. (2017). Data mining : Teori dan Aplikasi Rapidmaner. Gava Media, Yogyakarta

Yulianty, W., Dewi, S.O., Zainzhilal, A.P.A. (2016). Perencanaan Pengendalian Produksi dan Persediaan Industri Sparepart Fabrikasi. Jurnal LOGIC (Logistics & Supply Chain Center). Vol. 1 No. 1 (2022)

Downloads

Published

2024-03-20

Similar Articles

You may also start an advanced similarity search for this article.