Smart Strategies in Hardware Provisioning for Ai Solutions in The Cloud

Authors

  • Yusuf Hambali Universitas Budi Luhur, Indonesia
  • Jan Everhard Riwurohi Universitas Budi Luhur, Indonesia
  • Victor Akbar Universitas Budi Luhur, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i12.43140

Keywords:

AI Hardware, Cloud Computing, Computing Acceleration

Abstract

Rapid developments in artificial intelligence (AI) have driven the need for more efficient and powerful computing infrastructure, especially in cloud environments. This research explores smart strategies in providing hardware for AI solutions in the cloud, focusing on the latest innovations in AI hardware such as neuromorphic chips, FPGAs, and ASICs. Through a comprehensive analysis of the current literature, performance benchmarks, and implementation case studies, the study identifies several key strategies. Key findings include the effectiveness of hybrid architectures that combine different types of AI hardware, the potential for resource disaggregators and composable architectures to improve flexibility and efficiency, and the importance of specific acceleration for different phases in the AI pipeline. The study also emphasizes the significance of performance optimization and energy efficiency, as well as the integration of security and data privacy features in AI hardware design. Challenges such as standardization, scalability, and complexity management are discussed along with future opportunities in green AI and computing-in-memory. In conclusion, implementing a smart strategy in the provision of AI hardware in the cloud requires a holistic approach that considers workload diversity, architectural flexibility, energy efficiency, and security aspects. This research provides valuable insights for cloud service providers, hardware manufacturers, and AI practitioners in optimizing infrastructure to support AI innovation in the cloud computing era.

References

Adelia, V. S., & Ginting, J. L. (2023). Pro-Plant: Sistem Monitoring Kesehatan Tanaman Berbasis Iot Sebagai Solusi Inovatif Untuk Optimalisasi Produksi Pertanian. Prosiding Seminar Nasional-Lomba Karya Tulis Ilmiah Polbangtan Bogor, 1(1), 87–100.

Aditya, R. (N.D.). Infrastruktur Cloud Pintar Dalam Sistem Layanan Informasi Berbasis Big Data.

Allo, B. R., Naim, Y., Soleh, O., Lazinu, V., & Nurkim, N. (2024). Peran Teknologi Cloud Computing Dalam Transformasi Infrastruktur Ti Perusahaan: Studi Analisis Implementasi Di Industri Manufaktur. Jurnal Cahaya Mandalika Issn 2721-4796 (Online), 1408–1414.

Barokah, I., & Asriyanik, A. (2021). Analisis Perbandingan Serverless Computing Pada Google Cloud Platform. Jurnal Teknologi Informatika Dan Komputer, 7(2), 169–187.

Barus, E., Pardede, K. M., & Manjorang, J. A. P. B. (2024). Transformasi Digital: Teknologi Cloud Computing Dalam Efisiensi Akuntansi. Jurnal Sains Dan Teknologi, 5(3), 904–911.

Chen, F., Shan, Y., Zhang, Y., Wang, Y., Franke, H., Chang, X., & Wang, K. (2014). Enabling Fpgas In The Cloud. Proceedings Of The 11th Acm Conference On Computing Frontiers, 1–10.

Fadil, A. (2020). Strategi Efisiensi Energi Dan Penyeimbangan Beban Kerja Layanan Cloud Computing Melalui Konsolidasi Mesin Virtual Dinamis. Applied Technology And Computing Science Journal, 3(1), 1–12.

Farizy, S., & Harianja, E. S. (2020). Pengembangan Media Penyimpanan Dalam Sistem Berkas (Studi Kasus Mahasiswa Stmik Eresha). Jurnal Ilmu Komputer, 3(2).

Fowers, B. J., Laurenceau, J.-P., Penfield, R. D., Cohen, L. M., Lang, S. F., Owenz, M. B., & Pasipanodya, E. (2016). Enhancing Relationship Quality Measurement: The Development Of The Relationship Flourishing Scale. Journal Of Family Psychology, 30(8), 997.

Haeruddin, H., Wijaya, G., & Khatimah, H. (2023). Sistem Keamanan Work From Anywhere Menggunakan Vpn Generasi Lanjut. Jitu: Journal Informatic Technology And Communication, 7(2), 102–113.

Li, M., Liu, Y., Liu, X., Sun, Q., You, X., Yang, H., Luan, Z., Gan, L., Yang, G., & Qian, D. (2020). The Deep Learning Compiler: A Comprehensive Survey. Ieee Transactions On Parallel And Distributed Systems, 32(3), 708–727.

Mahendra, G. S., Ohyver, D. A., Umar, N., Judijanto, L., Abadi, A., Harto, B., Anggara, I. G. A. S., Ardiansyah, A., Saktisyahputra, S., & Setiawan, I. K. (2024). Tren Teknologi Ai: Pengantar, Teori, Dan Contoh Penerapan Artificial Intelligence Di Berbagai Bidang. Pt. Sonpedia Publishing Indonesia.

Manaek, R., Indrajit, R. E., & Dazki, E. (2023). Arsitektur Perusahaan Untuk Infrastuktur Telekomunikasi Di Daerah Pedalaman Indonesia. Satin-Sains Dan Teknologi Informasi, 9(2), 1–11.

Mardianto, T., Fitriansyah, A., & Nugroho, P. A. (2024). Optimalisasi Layanan Bandwidth Internet Menggunakan Teknologi Sd (Software Defined)-Wan. Jeis: Jurnal Elektro Dan Informatika Swadharma, 4(2), 66–79.

Mursalin, M., Firdaus, F., Fazilatunnisa, A., Puspita, R. D., Rahmatullah, M. R., & Anshori, A. (2024). Revolusi Teknologi: Tantangan Masa Depan Integrasi Teknologi Kecerdasan Buatan (Ai) Dalam Arsitektur Komputer. Kohesi: Jurnal Sains Dan Teknologi, 3(6), 77–90.

Nehemia, J. P., & Hendrayana, M. R. (2024). Tantangan Dan Manfaat Ai Dalam Perlindungan Data Kantor: Mengoptimalkan Keamanan Informasi. Jurnal Transformasi Bisnis Digital, 1(3), 13–27.

Prasetya, A., Arganata, M. D., & Sutabri, T. (2024). Analisis Perbandingan Antara Teknologi Cloud Computing Dan Infrastruktur Komputer Tradisional Dalam Konteks Bisnis. Scientica: Jurnal Ilmiah Sains Dan Teknologi, 2(7), 143–147.

Rifky, S., Kharisma, L. P. I., Afendi, H. A. R., Napitupulu, S., Ulina, M., Lestari, W. S., Maysanjaya, I. M. D., Kelvin, K., Sinaga, F. M., & Muchtar, M. (2024). Artificial Intelligence: Teori Dan Penerapan Ai Di Berbagai Bidang. Pt. Sonpedia Publishing Indonesia.

Setiawan, M. N., Roring, R. S., Atma, Y. D., & Tetiawadi, H. (2024). Studi Empiris Terhadap Asistensi Artificial Intelligence (Ai) Dalam Rancang Bangun Aplikasi. Digital Transformation Technology, 4(1), 364–373.

Suryadi, D., Octiva, C. S., Fajri, T. I., Nuryanto, U. W., & Hakim, M. L. (2024). Optimasi Kinerja Sistem Iot Menggunakan Teknik Edge Computing. Jurnal Minfo Polgan, 13(2), 1456–1461.

Vogginger, B., Kreutz, F., López-Randulfe, J., Liu, C., Dietrich, R., Gonzalez, H. A., Scholz, D., Reeb, N., Auge, D., & Hille, J. (2022). Automotive Radar Processing With Spiking Neural Networks: Concepts And Challenges. Frontiers In Neuroscience, 16, 851774.

Zhao, S., Chancellor, W., Jackson, T., & Boult, C. (2021). Productivity As A Measure Of Performance: Abares Perspective. Farm Policy J, 18(1), 4–14.

Zulkarnain, Z., Jesselyn, J., Hansvirgo, H., Gunawan, F., & Dion, S. A. (2024). Peran Artificial Intelligence (Ai) Dalam Peningkatan It Governance: Kajian Literatur. Merkurius: Jurnal Riset Sistem Informasi Dan Teknik Informatika, 2(3), 62–71.

Downloads

Published

2024-12-27