Implementation of K-Nearest Neighbor Method for Selection of New Employee Candidates (Case Study: CV. Syntax Corporation Indonesia)

Authors

  • Amelia Universitas Catur Insan Cendekia (UCIC) Cirebon, Indonesia
  • Marsani Asfi Universitas Catur Insan Cendekia (UCIC) Cirebon, Indonesia
  • Rifqi Fahrudin Universitas Catur Insan Cendekia (UCIC) Cirebon, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i7.1305

Keywords:

Employee, Classification, K-Nearest Neighbor, Rapidminer

Abstract

K-Nearest Neighbor (KNN) is a method that belongs to the group in classifying data that is simple and easy to implement, effective on larger data, and can classify data appropriately. One of the advantages possessed by the K-Nearest Neighbor algorithm is that it can be applied to large amounts of data and has a lot of noise so this method is quite easy to implement. This study aims to utilize the advantages of the K-NN algorithm in data-based classification to increase efficiency and accuracy in the employee selection process in determining suitable employee candidates by the criteria determined by the company. The results showed that the results of employee presets received from 21 testing data were 51% and for employee presentations that failed as much as 49% while from the entire data set of 140 data, the accuracy level produced after being tested using rapid miner tools resulted in 82% accuracy. So it can be concluded that the percentage accuracy of 82% shows that most prospective employees have been predicted or classified correctly by the model. This high level of accuracy can be an indication that the K-Nearest Neighbor method used in combination with Rapidminer can handle prospective employee data well.

References

Anshori, L., Putri, R. R. M., & Tibyani, T. (2018). Implementasi Metode K-Nearest Neighbor untuk Rekomendasi Keminatan Studi (Studi Kasus: Jurusan Teknik Informatika Universitas Brawijaya). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(7), 2745–2753.

Arhami, M., Kom, M., & Muhammad Nasir, S. T. (2020). Data Mining-Algoritma dan Implementasi. Penerbit Andi.

Dzikrulloh, N. N. (2017). Indriati and BD Setiawan,". Penerapan Metode K–Nearest Neighbor (KNN) Dan Metode Weighted, 1(5), 1.

Hertyana, H. (2019). Seleksi penerimaan karyawan baru menggunakan metode topsis. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 4(2), 143–148.

Imron, M., & Kusumah, S. A. (2018). Application of data mining classification method for student graduation prediction K-Nearest Neighbor (K-NN) algorithm. International Journal of Informatics and Information Systems, 1(1), 1–8.

Khasanah, M. N., Harjoko, A., & Candradewi, I. (2016). Klasifikasi sel darah putih berdasarkan ciri warna dan bentuk dengan metode K-Nearest Neighbor (K-NN). IJEIS, 6(2), 151–162.

Kurniawan, D., & Saputra, A. (2019). Penerapan K-Nearest Neighbour dalam Penerimaan Peserta Didik dengan Sistem Zonasi. Jurnal Sistem Informasi Bisnis, 9(2), 212.

Sitepu, R. D., & Buulolo, E. (2017). Implementasi Algoritma Nearest Neighbor Pada Penerimaan Pegawai Baru Pada MTS Ikhwanuts Tsalits Talun Kenas. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 1(1).

Supriana, I. W., & Astuti, L. G. (2019). Implementasi K-Nearest Neighbor Pada Penentuan Keluarga Miskin Bagi Dinas Sosial Kabupaten Tabanan. Jurnal Teknologi Informasi Dan Komputer, 5(1).

Wijaya, N. V., Asfi, M., & Septian, W. E. (2023). Sistem Informasi Geospasial Penerima Bantuan Sosial Disabilitas Menggunakan Klasterisasi Fuzzy K-Means. Journal of Practical Computer Science, 3(2), 59–68.

Downloads

Published

2024-05-25