Breaking Connectivity Barriers in Digital Mining with a Resilient LTE-WLAN Overlay Network
##semicolon##
https://doi.org/10.59188/eduvest.v5i12.51892##semicolon##
Digital Transformation##common.commaListSeparator## Coal Mining##common.commaListSeparator## Network Planning##common.commaListSeparator## LTE##common.commaListSeparator## Wireless Access PointAbstrakt
Digital transformation is essential to improving productivity and sustainability in mining operations. However, complex topography—such as deep pits, high walls, and uneven terrain—creates significant challenges for wireless communication infrastructure. Standalone Wi-Fi networks suffer from unstable signals, while LTE networks experience blind spots in obstructed areas. Field assessments at a mining site in South Kalimantan, Indonesia, revealed that 21.6% of operational zones recorded LTE RSRP levels below –110 dBm, disrupting key operational connectivity. This study proposes a hybrid LTE–WLAN overlay architecture using dynamic load-balancing and failover mechanisms to ensure reliable, high-speed communication. The approach offers environmental adaptability, network flexibility, and cost-efficiency by combining LTE’s wide-area coverage with WLAN’s localized stability. Simulation results show FTP throughput exceeding 94%, RSRP above –100 dBm in 92.43% of areas, and SINR above 98.40%, with seamless handovers and 100% E-RAB success rates. Bandwidth analysis highlights major fluctuations in standalone Wi-Fi (0–2000 Kbps), whereas the overlay solution maintains stable 2–6 Mbps bandwidth. Connection quality in overlay networks remains above 98%, compared to frequent drops below 50% in standalone Wi-Fi. These findings demonstrate that the LTE-WLAN overlay architecture significantly enhances communication stability and performance across challenging mining environments, addressing the identified connectivity gaps through practical, field-validated implementation. Connection quality and bandwidth utilization are identified as key success parameters, confirming that the proposed solution is practical, scalable, and effective for supporting real-time monitoring, IoT integration, and industrial automation in digital mining.
##submission.citations##
Ariyanti, S. (2019). Perbandingan biaya jaringan dan kelayakan teknologi LTE pada frekuendsi 900 MHz, 1800 MHz, 2100 MHz dan 2300 MHz untuk mendukung rencana pita lebar di Indonesia. Buletin Pos dan Telekomunikasi, 17.
Baswade, S. P., Kumar, D. K. S., & Lekshmi, M. R. (2019). Performance evaluation of LTE U and Wi Fi coexistence under overlay architecture. Electronics, 11(7).
Bhattacharya, J. (2023). Private LTE network in mines and oil fields: The status of progress and adoption. Journal of Mines, Metals and Fuels, 71.
Chen, S., Zheng, S., Yang, Z., Chen, T., Zhao, Z., & Yang, X. (2023). Deep learning-based SNR estimation with covariance input. In 2023 IEEE 23rd International Conference on Communication Technology (ICCT) (pp. 181–187). IEEE. https://doi.org/10.1109/ICCT59356.2023.10419442
Direktur Utama AMM. (2022, April). Peningkatan performa dengan menerapkan digitalisasi pada sektor pertambangan. Jakarta.
Gawande, M. B., & Salunkhe, D. R. (2014). Situation aware network (OWN): Adaptive traffic offloading for LTE WLAN overlay architecture. International Journal of Information Technology & Telecom, 5, 2581–2587.
Haeruddin, K. (2021). Analisa dan implementasi controller untuk device PTMP menggunakan cloud UISP pada PT. Bandar Abadi. Conference on Business, Social Sciences and Technology, 1.
International Council on Mining and Metals. (2023). ICMM mining principles. https://www.icmm.com/mining-principles
Karo Karo, F., Naibaho, E. S., & Ginanjar, F. N. (2019). Analisis hasil pengukuran performansi jaringan 4G LTE 1800 MHz di area Sokaraja Tengah kota Purwokerto menggunakan Genex Assistant versi 3.18. AITI Jurnal Teknologi Informasi, 16, 115–124.
Kementerian Energi dan Sumber Daya Mineral. (2023). Roadmap digitalisasi pertambangan mineral dan batubara 2021-2025. Indonesia. https://www.esdm.go.id/assets/media/content/content-roadmap-digitalisasi-sub-sektor-minerba.pdf
Kojima, S., Feng, Y., & Ootsu, K. (2022). Towards deep learning-guided multiuser SNR and Doppler shift detection for next-generation wireless systems. In 2022 IEEE International Conference on Communications (pp. 1–6). IEEE.
Pribadi, A. (2024, March 31). Sektor minerba tetap memegang peranan penting bagi pertumbuhan ekonomi. Kementrian Energi dan Sumber Daya Mineral Republik Indonesia. https://www.esdm.go.id/id/media-center/arsip-berita/sektor-minerba-tetap-memegang-peranan-penting-bagi-pertumbuhan-ekonomi
Price, E., & Woodruff, D. P. (2012). Applications of the Shannon-Hartley theorem to data streams and sparse recovery. In 2012 IEEE International Symposium on Information Theory Proceedings (pp. 2446–2450). IEEE. https://doi.org/10.1109/ISIT.2012.6283954
Pulukandang, U. R. (2024, March 31). Pentingnya implementasi teknologi digital untuk sektor minerba. Webinar ISOMETRIC Kampus ITS. https://www.its.ac.id/news/2022/07/28/pentingnya-implementasi-teknologi-digital-untuk-sektor-minerba/
Saliba, S., & Imad, Z. (2023). Wi Fi LTE overlay networks for industrial applications. International Journal of Computer Networks & Communications, 15(3), 1–15.
Seminar Hasil Penelitian Vokasi (SEMHAVOK) Universitas Bina Darma. (2021). Perancangan jaringan wireless point to point dengan memanfaatkan frame relay pada jaringan lan di PT. Bumi Sawindo Permai. Seminar Hasil Penelitian Vokasi (SEMHAVOK) Universitas Bina Darma, 3.
Valdivia-Bedregal, J. (2021). Private LTE network service management model, based on agile methodologies for big mining companies. International Journal of Advanced Computer Science and Applications, 12(4), 400–406.
##submission.downloads##
Publikované
##submission.howToCite##
Číslo
Sekcia
##submission.license##
##submission.copyrightStatement##
##submission.license.cc.by-sa4.footer##





