Simulation Model of Precast Concrete Element Delivery on Time and Operational Costs of the Precast Yard in the Board Mill Construction Project

Authors

  • Annastashia Dinie Aprilia Cakrawinata Program Studi Magister Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Trisakti, Indonesia
  • Endah Kurniyaningrum Program Studi Magister Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Trisakti, Indonesia
  • Bambang Endro Yuwono Program Studi Magister Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Trisakti, Indonesia
  • Darmawan Pontan Program Studi Magister Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan, Universitas Trisakti, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i5.1299

Keywords:

Konstruksi Pracetak, Pengiriman Elemen Pracetak, Manajemen Rantai Pasok, Simulasi Pengiriman, Optimisasi Pengiriman

Abstract

This research aims to develop an optimal delivery model for precast elements in the Board Mill construction project in Pelalawan Regency, Riau, which includes 7,412 precast elements. Using an engineer-to-order manufacturing system and flowshop production, simulations were conducted to evaluate delivery variables and their impact on duration and cost. Data from the simulations were analyzed using linear regression to determine the most optimal delivery model, with the significance of independent variables tested using a P-value threshold of ≤ 0.15. The simulation and calculation results show that the most optimal delivery model for delivering precast column, beam, slab, and crane beam elements is a delivery model with a 12-hour work period or with overtime. The optimal delivery condition for column elements uses 3 cranes and 9 trailers; for beam and slab elements, it uses 3 cranes and 8 trailers; and for crane beam elements, it uses 3 cranes and 7 trailers.

References

Abedi, M. et al. (2016) ‘Integrated collaborative tools for precast supply chain management’, Scientia Iranica, 23(2), pp. 429–448. Available at: https://doi.org/10.24200/sci.2016.2129.

Al-Bazi, A.F., Dawood, N.N. and Dean, J.T. (2010) ‘Improving performance and the reliability of off-site pre-cast concrete production operations using simulation optimisation’, Journal of Information Technology in Construction, 15, pp. 335–336. Available at: https://research.tees.ac.uk/en/publications/improving-performance-and-the-reliability-of-off-site-pre-cast-co.

Almashaqbeh, M. and El-Rayes, K. (2022) ‘Minimizing transportation cost of prefabricated modules in modular construction projects’, Enginering, Construction and Architectural Management, 29(10), pp. 3847–3867. Available at: https://doi.org/https://doi.org/10.1108/ECAM-11-2020-0969.

Ballard, G. and Arbulu, R. (2004) Taking prefabrication lean, Proceedings of the 12th annual conference of the International Group for Lean Construction. Elsinore, Denmark.

Bataglin, F.S. et al. (2020) ‘Model for planning and controlling the delivery and assembly of engineer-to-order prefabricated building systems : exploring synergies between Lean and BIM 1’, 177(March 2019), pp. 165–177.

Bernstein, H.M., Gudgel, J.E. and Laquidara-Carr, D. (2011) ‘Prefabrication and Modularization: Ncreasing Productivity in the Construction Industry’, McGraw Hill Construction: New York, NY, USA [Preprint].

Bertrand, J.W.M. and Muntslag, D.R. (1993) ‘Production control in engineer-to-order firms’, International Journal of Production Economics, 30–31, pp. 3–22. Available at: http://dx.doi.org/10.1016/0925-5273(93)90077-X.

Bilec, M. et al. (2006) ‘Example of a hybrid life-cycle assessment of construction processes’, Journal of Infrastructure System, 12(4), pp. 207–215. Available at: http://dx.doi.org/10.1061/(ASCE)1076-0342(2006)12:4(207).

Bortolini, R., Formoso, C.T. and Viana, D.. (2019) ‘Site logistics planning and control for engineer-to-order prefabricated building systems using BIM 4D modeling’, Automation in Construction, 98, pp. 248–264. Available at: http://dx.doi.org/10.1016/j.autcon.2018.11.031.

Chen, J.H. et al. (2017) ‘Optimizing profit and logistics for precast concrete production’, Canadian Journal of Civil Engineering [Preprint]. Available at: https://doi.org/https://doi.org/10.1139/cjce-2016-0401.

Cheng, Z.H. et al. (2023) ‘Research on Vehicle Scheduling Optimization Model of Precast Concrete Components Considering Carbon Emission Cost’, Transportation Research Record [Preprint]. Available at: https://doi.org/https://doi.org/10.1177/03611981231211321.

Clough, R.H., Sears, S.K. and Sears, G.A. (2008) Construction Project Management A Practical Guide to Field Construction Management. 5th edn. Canada: John Wiley & Sons, Inc.

CPA (2005) ‘Improving Construction Logistics’, in Report of the Strategic Forum for Construction Logistics Group. London.

Dan, Y.R. et al. (2024) ‘Flowshop scheduling optimization for multi-shift precast production with on-time delivery’, Engineering Applications of Artificial Intelligence, 127. Available at: https://doi.org/https://doi.org/10.1016/j.engappai.2023.107163.

Dan, Y.R. and Liu, G.W. (2023) ‘Integrated scheduling optimization of production and transportation for precast component with delivery time window’, Enginering, Construction and Architectural Management, ahead-of-p(ahead-of-print). Available at: https://doi.org/https://doi.org/10.1108/ECAM-09-2022-0871.

Dipohusodo, I. (1996) Manajemen Proyek dan Konstruksi. 7th edn. Yogyakarta: Kanisius.

Ervianto, W.I. (2004) Teori Aplikasi Manajemen Proyek Konstruksi. Yogyakarta: Andi.

Fang, Y. and Ng, S.T. (2019) ‘Genetic algorithm for determining the construction logistics of precast components’, 26(10), pp. 2289–2306. Available at: https://doi.org/10.1108/ECAM-09-2018-0386.

Han, Y.H., Yan, X.Y. and Piroozfar, P. (2023) ‘An overall review of research on prefabricated construction supply chain management’, Enginering, Construction and Architectural Management, 30(10), pp. 5160–5195. Available at: https://doi.org/https://doi.org/10.1108/ECAM-07-2021-0668.

Ho, C.T.T. (2019) ‘Application of Optimization To the Production Planning’.

Hussein, M. et al. (2021) ‘Modelling in off-site construction supply chain management: A review and future directions for sustainable modular integrated construction’, Journal of Cleaner Production, 310. Available at: https://doi.org/https://doi.org/10.1016/j.jclepro.2021.127503.

Jacobson, L.E.O. and Lindh, W. (2019) Developing a Supply and Demand Planning Optimization Case study from the Precast Industry. Chalmers University of Technology.

Jang, Y.E., Son, J.W. and Hwang, S. (2022) ‘Requirements Analysis for Development of Off-Site Construction Project Management System: Focusing on Precast Concrete Construction’, Buildings, 12(10). Available at: https://doi.org/10.3390/buildings12101499.

Jeon, S., Lee, J. and Jeong, K. (2021) ‘Development of a Simulation Model for Supply Chain Management of Precast Concrete’, Korean Journal of Construction Engineering and Management, 22(5), pp. 86–98. Available at: https://doi.org/https://doi.org/10.6106/KJCEM.2021.22.5.086.

Jiang, W. and Wu, L.J. (2021) ‘Flow Shop Optimization of Hybrid Make-to-Order and Make-to-Stock in Precast Concrete Component Production’, Journal of Cleaner Production, 297. Available at: https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126708.

Joyosukarto, M. (2006) ‘Studi Sistem Pengendalian Proyek Konstruksi PLTN di Indonesia: Faktor-faktor Penghambat dan Pendukung’, in Prosiding Seminar Nasional Ke-12. Yogyakarta.

Kazaz, A., Ulubeyli, S. and Tuncbilekli, N.A. (2012) ‘Causes of delays in construction in Turkey’, Journal of Civil Engineering and Management, 18(3), pp. 426–435. Available at: https://doi.org/10.3846/13923730.2012.698913.

Kerzner, H. (1982) Project Management For Executive. Van Nostrand Reinhold Company.

Kurniyaningrum, E., et al. (2024) ' Analisis Faktor Penyebab Terjadinya Cost Overrun Pada Proyek Preservasi Jalan', Rang Teknik Journal, 7(2), pp. 367-372, Available at: http://dx.doi.org/10.31869/rtj.v7i2.5476.

Ko, C.H. (2013) ‘Material transshipment for precast fabrication’, Journal of Civil Engineering and Management, 19(3), pp. 335–347. Available at: https://doi.org/10.3846/13923730.2012.744771.

Ko, C.H. and Ballard, G. (2005) Fabrication lead time and demand variability: An empirical study, Proceedings of the Construction Research Congress. San Diego, CA.

Kong, L.L. et al. (2018) ‘Sustainable performance of just-in-time (JIT) management in time-dependent batch delivery scheduling of precast construction’, Journal of Cleaner Production, 193, pp. 684–701. Available at: https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.037.

Koskela, L. (1992) Application of the new philosophy to construction. Technical Report No. 72.

Lessing, J., Stehn, L. and Ekholm, A. (2005) ‘Industrialised housing: definition and categorization of the concept’, Proceedings of the 13th International Group for Lean Construction Conference, Sydney, Australia, pp. 471–480. Available at: http://www.scopus.com/inward/record.url?eid=2-s2.0-84866088455&partnerID=40&md5=4f72ea8d09ace562f4e7231a3b0d2834.

Lu, W.S. et al. (2014) ‘Cost-benefit analysis of building information modeling (BIM) implementation in construction projects by demystifying the time-effort distribution curves’, Building and Environment, 82, pp. 317–327.

Mao, W.Q. et al. (2024) ‘An optimization model for just-in-time (JIT) delivery of precast components considering 3D loading constraints, real-time road conditions and assembly time’, Enginering, Construction and Architectural Management, ahead-of-p(ahead-of-print). Available at: https://doi.org/https://doi.org/10.1108/ECAM-04-2023-0372.

Marasini, R. and Dawood, N.N. (2002) ‘Simulation modeling and optimization of stockyard layouts for precast concrete products’, in Proceedings of the Winter Simulation Conference. San Diego, CA: IEEE. Available at: https://doi.org/https://doi.org/10.1109/WSC.2002.1166458.

Mawlana, M. and Hammad, A. (2013) ‘Simulation-based Optimization of Precast Box Girder Concrete Bridge Construction Using Launching Gantry Simulation-based Optimization of Precast Box Girder Concrete Bridge Construction Using Full Span Launching Gantry’, in 4th Construction Specialty Conference. Montréal, Québec.

Moengin, P. (2009) ‘KONFIGURASI HUBUNGAN ANTARA SISTEM PRODUKSI, STRATEGI BISNIS, LINGKUNGAN KOMPETITIF DAN BUDAYA ORGANISASI PADA PERUSAHAAN MANUFAKTUR’, Media Riset Bisnis & Manajemen, 9(2), pp. 135–152.

Muka, I.W., Wahyuni, P.I. and Widiarca, I.K. (2023) ‘Supply Chain Risk Management Model: Case Study of the Precast Concrete Company Pt. Adi Jaya Beton Denpasar’, Engineering and Technology Journal, 08(12), pp. 3175–3183. Available at: https://doi.org/10.47191/etj/v8i12.08.

Nica, A. (2019) ‘Optimization of reinforcement steel supply to precast concrete plants’.

Nicał, A. (2021) ‘Optimizing transportation in the precast concrete plants’, Arabian Journal of Geosciences, 14(10). Available at: https://doi.org/10.1007/s12517-021-07150-y.

Nicał, A. and Anysz, H. (2019) ‘The quality management in precast concrete production and delivery processes supported by association analysis’, International Journal of Environmental Science and Technology, 17, pp. 577–590.

NPCA (2006) ‘NPCA QUALITY CONTROL MANUAL For Precast Concrete Plants’, 14th Editi(May 2005).

Phan, T. and Athigakunagorn, N. (2022) ‘Uncertain Supply Chain Management’, 10, pp. 679–692. Available at: https://doi.org/10.5267/j.uscm.2022.5.007.

PRECAST/PRESTRESSED CONCRETE INSTITUTE (1999) Manual for QUALITY CONTROL for Plants and Production of STRUCTURAL PRECAST CONCRETE PRODUCTS. 4th edn. Edited by T.P.P.C. Committee. Chicago, Illinois: PRECAST/PRESTRESSED CONCRETE INSTITUTE.

Ribeirinho, M.J. et al. (2020) ‘The Next Normal in Construction’, McKinsey & Company [Preprint].

Ruan, M. and Xu, F. (2022) ‘IMPROVED EIGHT-PROCESS MODEL OF PRECAST COMPONENT PRODUCTION SCHEDULING CONSIDERING RESOURCE CONSTRAINTS’, 28(3), pp. 208–222.

Saleh, C. and Mubiena, G.F. (2021) ‘Implementation of construction supply chain flow based on SCOR 12 . 0 performance standards Implementation of construction supply chain flow based on’, pp. 0–7. Available at: https://doi.org/10.1088/1742-6596/1833/1/012012.

Skjelbred, S., Fossheim, M.E. and Drevland, F. (2015) ‘Comparing different approaches to site organization and logistics: multiple case studies’, in 23rd Annual Conference of the International Group for Lean Construction. Perth, Australia, pp. 13–22. Available at: http://www.iglc.net/papers/details/1178.

Soeharto, I. (1999) Manajemen Proyek: Dari Konseptual Sampai Operasional. 2nd edn. Jakarta: Erlangga.

Soemardi, B.W. et al. (2006) ‘Konsep Earned Value untuk Pengelolaan Proyek Konstruksi’, Institut Teknologi Bandung, pp. 1–13. Available at: https://www.academia.edu/2979947/Konsep_Earned_Value_untuk_Pengelolaan_Proyek_Konstruksi.

Tucker, S.N. et al. (2001) Building and construction industries supply chain project (domestic), CSIRO Confidential Report, Canberra.

Wang, S. et al. (2020) ‘Research on production process optimization of precast concrete component factory based on value stream mapping’, Enginering, Construction and Architectural Management, 27, pp. 850–871. Available at: https://doi.org/10.1108/ECAM-10-2018-0455.

Wang, S. and Zhang, X. (2023) ‘Production scheduling of prefabricated components considering delivery methods’, Scientific Reports, 13(1), pp. 1–14. Available at: https://doi.org/10.1038/s41598-023-42374-w.

Wang, Z. and Hu, H. (2017) ‘Improved precast production-scheduling model considering the whole supply chain’, Journal of Computing in Civil Engineering, 31.

Wang, Z.J., Hu, H. and Zhou, W. (2017) ‘RFID Enabled Knowledge-Based Precast Construction Supply Chain’, Computer-Aided Civil and Infrastructure Engineering, 32(6), pp. 499–514. Available at: https://doi.org/https://doi.org/10.1111/mice.12254.

Yang, Z.T., Ma, Z.L. and Wu, S. (2016) ‘Optimized flowshop scheduling of multiple production lines for precast production’, Automation in Construction, 72, pp. 321–329.

Yin, J. et al. (2024) ‘Multi-objective optimization for coordinated production and transportation in prefabricated construction with on-site lifting requirements’, Computers & Industrial Engineering, 189. Available at: https://doi.org/https://doi.org/10.1016/j.cie.2024.110017.

Yuan, Z. et al. (2020) ‘Research on Lean Planning and Optimization for Precast Component Production Based on Discrete Event Simulation’, 2020.

Yusuf, M.M., Karam, A. and Eltawil, A.B. (2019) ‘A Simulation based Optimization Study for Optimum Sequencing of Precast Components Considering Supply Chain Risks’, International Conference on Operations Research and Enterprise Systems, (Icores), pp. 330–337. Available at: https://doi.org/10.5220/0007373303300337.

Zhai, Y. et al. (2017) ‘Production lead-time hedging and coordination in prefabricated construction supply chain management’, International Journal of Production Research, 55(14), pp. 3984–4002. Available at: https://doi.org/https://doi.org/10.1080/00207543.2016.1231432.

Zhang, H. and Yu, L. (2020) ‘Dynamic transportation planning for prefabricated component supply chain’, Enginering, Construction and Architectural Management, 27(9), pp. 2553–2576. Available at: https://doi.org/https://doi.org/10.1108/ECAM-12-2019-0674.

Zhang, R.X. et al. (2023) ‘Green optimization for precast production rescheduling based on disruption management’, Journal of Cleaner Production, 420. Available at: https://doi.org/https://doi.org/10.1016/j.jclepro.2023.138406

Downloads

Published

2024-05-25