In Silico Study: Metabolite Compounds of Zingiber Officinale Var. Rubrum as Potential E2F2 Inhibitor Agents in Breast Cancer Signaling Pathway
DOI:
https://doi.org/10.59188/eduvest.v6i1.52614Keywords:
molecular docking, red ginger, CDK4, CDK 6, bioinformaticsAbstract
Breast cancer ranks among the leading causes of death in women, linked to disruptions in signaling pathways regulating cell proliferation and survival, particularly E2F2 gene activity. E2F2 regulation falters when pRB is phosphorylated by Cyclin D–CDK4/6 or Cyclin E–CDK2 complexes, freeing E2F2 to activate cell cycle genes. This study, "In Silico Study: Metabolite Compounds of Zingiber officinale var. rubrum as Potential E2F2 Inhibitor Agents in Breast Cancer Signaling Pathway," assesses red ginger (Zingiber officinale var. rubrum) metabolites as CDK4/CDK6 inhibitors via molecular docking in silico. Target protein structures came from the Protein Data Bank; metabolites were chosen for reported anticancer effects and 3D-modeled. Docking used Molegro Virtual Docker to gauge ligand affinity and interactions at active sites. Results highlighted [12]-shogaol, (E,E)-α-farnesene, and 1-dehydro-[6]-gingerdione as CDK4 inhibitors; azafrin, [8]-shogaol, and [12]-shogaol for CDK6. These exhibit strong binding via hydrogen bonds and hydrophobic interactions at key residues. Red ginger metabolites show promise as CDK4/CDK6 inhibitors for breast cancer therapy, pending in vitro/in vivo validation.
References
Ali, M. L., Noushin, F., Sadia, Q. A., Metu, A. F., Meem, J. N., Chowdhury, M. T., Rasel, M. H., Suma, K. J., Alim, M. A., & Jalil, M. A. (2025). Spices and culinary herbs for the prevention and treatment of breast cancer: A comprehensive review with mechanistic insights. Cancer Pathogenesis and Therapy, 3(3), 197–214.
Anandasadagopan, S. K., Sivaprakasam, P., Pathmanapan, S., Pandurangan, A. K., & Alagumuthu, T. (2020). Targeting the key signaling pathways in breast cancer treatment using natural agents. In Plant-derived bioactives: Chemistry and mode of action (pp. 137–183). Springer.
Bischoff-Kont, I., Primke, T., Niebergall, L. S., Zech, T., & Fürst, R. (2022). Ginger constituent 6-shogaol inhibits inflammation- and angiogenesis-related cell functions in primary human endothelial cells. Frontiers in Pharmacology, 13, 844767. https://doi.org/10.3389/fphar.2022.844767
Diessner, J., Wischnewsky, M., Blettner, M., Häusler, S., Janni, W., Kreienberg, R., Stein, R., Stüber, T., Schwentner, L., Bartmann, C., & Wöckel, A. (2016). Do patients with luminal A breast cancer profit from adjuvant systemic therapy? A retrospective multicenter study. PLOS ONE, 11(12), e0168730. https://doi.org/10.1371/journal.pone.0168730
Dubey, S. K., Bhatt, T., Agrawal, M., Saha, R. N., Saraf, S., Saraf, S., & Alexander, A. (2022). Application of chitosan modified nanocarriers in breast cancer. International Journal of Biological Macromolecules, 194, 521–538. https://doi.org/10.1016/j.ijbiomac.2021.11.095
Elakkiya, M. R., Krishnasreya, M., Tharani, S., Arun, M., Vijayalakshmi, L., Lim, J., Ghfar, A. A., & Chithradevi, B. (2025). Targeting CDK4/6 in cancer: Molecular docking and cytotoxic evaluation of Thottea siliquosa root extract. Biomedicines, 13(7), 1658. https://doi.org/10.3390/biomedicines13071658
Gao, Y., Qiao, X., Liu, Z., & Zhang, W. (2024). The role of E2F2 in cancer progression and its value as a therapeutic target. Frontiers in Immunology, 15, 1397303. https://doi.org/10.3389/fimmu.2024.1397303
Hairunisa, I., Bakar, M. F. A., Da’i, M., Bakar, F. I. A., & Syamsul, E. S. (2023). Cytotoxic activity, anti-migration, and in silico study of black ginger (Kaempferia parviflora) extract against breast cancer cells. Cancers, 15(10), 2785. https://doi.org/10.3390/cancers15102785
Huang, P., Zhou, P., Liang, Y., Wu, J., Wu, G., Xu, R., Dai, Y., Guo, Q., Lu, H., & Chen, Q. (2021). Exploring the molecular targets and mechanisms of [10]-gingerol for treating triple-negative breast cancer using bioinformatics approaches, molecular docking, and in vivo experiments. Translational Cancer Research, 10(11), 4680–4693.
Kassab, A., Gupta, I., & Al Moustafa, A. E. (2023). Role of E2F transcription factor in oral cancer: Recent insight and advancements. Seminars in Cancer Biology, 92, 28–41. https://doi.org/10.1016/j.semcancer.2023.03.004
Kim, T. W., & Lee, H. G. (2024). Anti-inflammatory 8-shogaol mediates apoptosis by inducing oxidative stress and sensitizes radioresistance in gastric cancer. International Journal of Molecular Sciences, 26(1), 173. https://doi.org/10.3390/ijms26010173
Kumar, A., Hussain, S., Yadav, I. S., Gissmann, L., Natarajan, K., Das, B. C., & Bharadwaj, M. (2015). Identification of human papillomavirus-16 E6 variation in cervical cancer and their impact on T and B cell epitopes. Journal of Virological Methods, 218, 51–58. https://doi.org/10.1016/j.jviromet.2015.03.008
Nile, S. H., & Park, S. W. (2015). Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Industrial Crops and Products, 70, 238–244. https://doi.org/10.1016/j.indcrop.2015.03.033
Piasecka, D., Braun, M., Kitowska, K., Mieczkowski, K., Kordek, R., Sadej, R., & Romańska, H. (2019). FGFs/FGFRs-dependent signalling in regulation of steroid hormone receptors—Implications for therapy of luminal breast cancer. Journal of Experimental & Clinical Cancer Research, 38(1), 230.
Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., Raffoul, W., Delaloye, J.-F., Treboux, A., & Fiche, M. (2016). A preclinical model for ERα-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell, 29(3), 407–422.
Telang, N. T. (2022). The divergent effects of ovarian steroid hormones in the MCF-7 model for luminal A breast cancer: Mechanistic leads for therapy. International Journal of Molecular Sciences, 23(9), 4800. https://doi.org/10.3390/ijms23094800
Wang, C.-Z., Ma, Q., Kim, S., Wang, D. H., Shoyama, Y., & Yuan, C.-S. (2022). Effects of saffron and its active constituent crocin on cancer management: A narrative review. Longhua Chinese Medicine, 5, 35. https://doi.org/10.21037/lcm-21-72
Yang, S., Chou, G., & Li, Q. (2018). Cardioprotective role of azafrin against myocardial injury in rats via activation of the Nrf2–ARE pathway. Phytomedicine, 47, 12–22. https://doi.org/10.1016/j.phymed.2018.04.042
Yip, H. Y. K., & Papa, A. (2021). Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments. Cells, 10(3), 659. https://doi.org/10.3390/cells10030659
Zhang, M., Viennois, E., Prasad, M., Zhang, Y., Wang, L., Zhang, Z., Han, M. K., Xiao, B., Xu, C., Srinivasan, S., & Merlin, D. (2016). Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 101, 321–340. https://doi.org/10.1016/j.biomaterials.2016.06.018
Zhang, X., Li, C., Wang, L., Fei, Y., Qin, W., Zhang, X., Li, C., Wang, L., Fei, Y., & Qin, W. (2019). Analysis of Centranthera grandiflora Benth transcriptome explores genes of catalpol, acteoside, and azafrin biosynthesis. International Journal of Molecular Sciences, 20(23), 6034. https://doi.org/10.3390/ijms20236034
Zhao, L., Rupji, M., Choudhary, I., Osan, R., Kapoor, S., Zhang, H.-J., Yang, C., & Aneja, R. (2020). Efficacy-based ginger fingerprinting reveals potential antiproliferative analytes for triple-negative breast cancer. Scientific Reports, 10(1), 19182. https://doi.org/10.1038/s41598-020-76220-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Khoirunnisa Purwamita Budiutami, Aryo Tedjo, Fadilah Fadilah, Surya Dwira, Ajeng M. Fajrin

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





