Analysis of Power Losses and Voltage Drop in the Parungpanjang–Cilejit LAA Traction Substation for KRL Service Optimization
DOI:
https://doi.org/10.59188/eduvest.v6i1.52081Keywords:
Traction Substation, Headway, Voltage Drop, Upstream Electricity, Power LossAbstract
The increase in the frequency of electric rail train trips on the Tanah Abang–Rangkasbitung line, especially on the Parungpanjang–Cilejit road section, requires the Upper Flow Electricity system to operate at a higher capacity to maintain the continuity of traction electricity supply. This study aims to analyze the existing conditions of the Upper Flow Electricity system, identify the technical factors that affect power loss and voltage drops, and evaluate several alternative solutions that can be applied to improve the reliability of power distribution. It used quantitative approach based on manual calculations using technical parameters such as the length of the trajectory between substations, conductor resistance, load current, and nominal voltage. Two alternative solutions were analyzed, namely the insertion of traction substations at strategic points to shorten the supply distance, as well as improving the technical specifications of the upstream power grid through the replacement of conductor size and configuration and increasing substation capacity. The calculation results show that, in the existing condition on the 8-minute headway, the voltage drop reached 239.256 V (14.77%) and the power loss was 268.813 kW. The alternative application of substation insertion lowered the voltage drop to 103.243 V (6.37%) and the power loss to 111.323 kW, while the alternative of increasing technical specifications resulted in a voltage drop of 140.958 V (8.7%) and a power loss of 134.406 kW. Both alternatives show significant potential in reducing power loss and keeping voltage within safe limits, so they can serve as problem-solving steps on this line.
References
Abrahamsson, L., Söder, L., & Kjellqvist, T. (2020). Railway electrification system optimization in Sweden: Voltage drop analysis and substation spacing. IEEE Transactions on Transportation Electrification, 6(2), 421–433. https://doi.org/10.1109/TTE.2020.2974176
Adetona, S. O., & Udeze, K. U. (2024). Enhanced dynamic droop control for microgrid frequency and voltage stabilization using hybrid energy storage systems: A SECANT method approach. Journal of Engineering, 30(9). https://doi.org/10.31026/j.eng.2024.09.01
Apriani, Y., & Jailani, I. (2022). Analisis traction power supply substation LRT Palembang. Electrician – Jurnal Rekayasa dan Teknologi Elektro, 16(2), 138–145. https://doi.org/10.23960/elc.v16n2.2234
Diyoke, G. C., & Eya, C. U. (2023). Effect of supply voltage variations on single-phase capacitor clamped multilevel inverter fed induction motor drive. International Journal of Applied Power Engineering, 12(4), 408–415. https://doi.org/10.11591/ijape.v12.i4.pp408-415
Githinji, R. M., & Were, S. (2018). Challenges of implementing e-procurement in the Ministry of Transport, Infrastructure, Housing and Urban Development in Nairobi, Kenya. Journal of Procurement & Supply Chain, 2(1).
Hananto, C. R. (2021). Optimasi penempatan gardu traksi listrik aliran atas (LAA) antara Stasiun Ceper–Stasiun Gawok berdasarkan penurunan tegangan untuk meningkatkan keandalan pasokan daya listrik KRL [Skripsi sarjana, Universitas Muhammadiyah Surakarta]. UMS Repository. https://eprints.ums.ac.id/92581/
Kumar, S., & Singh, P. (2021). Power loss optimization in Delhi Metro overhead catenary systems under high-frequency operations. Electric Power Systems Research, 195, 107156. https://doi.org/10.1016/j.epsr.2021.107156
Latif, A., Hussain, S. M. S., Iqbal, A., Das, D. C., Ustun, T. S., & Al-Durra, A. (2023). Concurrent frequency–voltage stabilization for hybrid microgrid with virtual inertia support. IET Renewable Power Generation, 17(9), 1981–1993. https://doi.org/10.1049/rpg2.12729
Salim, W., & Negara, S. D. (2018). Infrastructure development under the Jokowi administration: Progress, challenges and policies. Journal of Southeast Asian Economies, 35(3), 386–401.
Saputra, A. (2019). Studi evaluasi analisa perhitungan kapasitas daya gardu traksi terhadap kebutuhan KRL jalur Depok–Manggarai. Journal of Electrical Power, Instrumentation and Control (EPIC), 3(2), 131–138. https://doi.org/10.32493/epic.v2i2.2886
Sim, L. W., Katman, H. Y., Baharuddin, I. N. Z., Ravindran, G., Ibrahim, M. R., & Alnadish, A. M. (2024). Global research trends in soft soil management for infrastructure development: Opportunities and challenges. IEEE Access, 12, 56789–56812. https://doi.org/10.1109/ACCESS.2024.3403720
Sugianto, H., Alfiansyah, A., & Oetomo, P. (2023). Studi tentang kelistrikan pada sistem kereta rel listrik. SINUSOIDA, 25(1), 63–74. https://doi.org/10.37277/s.v25i1.1671
Wibowo, R. S., & Haryatmi, E. (2022). Analisis kapasitas daya pada gardu traksi lintas Bojonggede–Bogor menggunakan kereta rel listrik seri EA 203. Jurnal Perkeretaapian Indonesia, 6(1), 1–13. https://doi.org/10.37367/jpi.v6i1.193
Wu, G., & Igarashi, H. (2024). An experimental approach to DC voltage stabilization in a hybrid microgrid system. In Proceedings of the 13th International Conference on Renewable Energy Research and Applications (ICRERA 2024). https://doi.org/10.1109/ICRERA62673.2024.10815277
Zhou, T., Zheng, Y., Wang, C., Chen, L., Liu, B., & Chen, Z. (2024). Small-signal modeling and frequency support capacity analysis of power load considering voltage variation effect. Symmetry, 16(7), 918. https://doi.org/10.3390/sym16070918
Zhu, H. (2025). Trade study matrix for electrical modeling software identification in voltage drop analysis. Procedia Computer Science, 268, 123–130. https://doi.org/10.1016/j.procs.2025.08.212
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Mardito Adenovit Kusnanda Putra, Budi Yanto Husodo

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





