Circulating Microrna-19 as a Non-Invasive Biomarker for Detecting Lung Cancer: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies

Autori

  • Farida Anggraini Soetedjo Universitas Wijaya Kusuma Surabaya, Indonesia
  • Nur Khamidah Universitas Wijaya Kusuma Surabaya, Indonesia
  • Johanes Aprilius Falerio Kristijanto Universitas Wijaya Kusuma Surabaya, Indonesia
  • Febrisma Bangun Sanjaya Universitas Wijaya Kusuma Surabaya

##semicolon##

https://doi.org/10.59188/eduvest.v5i8.51965

##semicolon##

miRNA-19##common.commaListSeparator## lung cancer##common.commaListSeparator## diagnosis

Abstrakt

Invasive procedures remain the gold standard for lung cancer diagnosis, while new cases in 2018 reached 30,023 patients and tend to occur at a younger age, necessitating non-invasive markers for early detection of lung cancer. Currently, numerous studies have been conducted on microRNA (miRNA) as a lung cancer biomarker, including miRNA-19; however, research findings on miRNA-19 in the diagnosis of this disease remain controversial, prompting this study to assess the ability of miRNA-19 to detect lung cancer through a meta-analysis. Literature searches were conducted in three databases (PubMed, Science Direct, and Cochrane) up to March 22, 2023, using the Patient, Intervention, Comparison, Outcome (PICO) principle, with inclusion criteria for prospective, retrospective, case-control, or cross-sectional studies providing data for analyzing the diagnostic capability of miRNA-19. The methods used adhere to the 2020 PRISMA guidelines. Analysis was performed using STATA, MetaDisc, and Review Manager software. Four articles met the inclusion criteria for this meta-analysis. The combined analysis results regarding the sensitivity of miRNA-19 in lung cancer diagnosis reached 0.81 (95% CI [confidence interval]: 0.76–0.85), specificity 0.69 (95% CI: 0.61–0.76), diagnostic odds ratio (DOR) 12.62 (95% CI: 4.73–33.65), and area under the curve (AUC) 0.85. Analysis of the positive likelihood ratio (PLR) and negative likelihood ratio (NLR) yielded results... Analysis of the positive likelihood ratio (PLR) and negative likelihood ratio (NLR) yielded results 2.51 (95% CI: 1.59–3.95) and 0.29 (95% CI: 0.18–0.48). Based on the above data, miRNA-19 has potential in the non-invasive diagnosis of lung cancer.

##submission.citations##

Androvic, P., Valihrach, L., Elling, J., Sjoback, R., & Kubista, M. (2017). Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Research, 45(15), e144–e144. https://doi.org/10.1093/nar/gkx376

Androvic, P., Valihrach, L., Elling, J., Sjoback, R., & Kubista, M. (2017). Two-tailed RT-qPCR: A novel method for highly accurate miRNA quantification. Nucleic Acids Research, 45(15), e144–e144.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

Chen, X., Hu, Z., Wang, W., Ba, Y., Ma, L., Zhang, C., Wang, C., Ren, Z., Zhao, Y., Wu, S., Zhuang, R., Zhang, Y., Hu, H., Liu, C., Xu, L., Wang, J., Shen, M., Zhang, J., Zen, K., & Zhang, C. Y. (2012). Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. International Journal of Cancer, 130(7), 1620–1628. https://doi.org/10.1002/ijc.26165

Chen, X., Mo, S., & Yi, B. (2022). The spatiotemporal dynamics of lung cancer: 30-year trends of epidemiology across 204 countries and territories. BMC Public Health, 22(1), 987. https://doi.org/10.1186/s12889-022-13688-z

Fan, L., Qi, H., Teng, J., Su, B., Chen, H., Wang, C., & Xia, Q. (2016). Identification of serum miRNAs by nano-quantum dots microarray as diagnostic biomarkers for early detection of non-small cell lung cancer. Tumor Biology, 37(6), 7777–7784. https://doi.org/10.1007/s13277-016-5004-7

Feng, Y., Liu, J., Kang, Y., He, Y., Liang, B., Yang, P., & Yu, Z. (2014). miR-19a acts as an oncogenic microRNA and is up-regulated in bladder cancer. Journal of Experimental & Clinical Cancer Research, 33(1), 67. https://doi.org/10.1186/s13046-014-0046-2

Gartmant, E. J., Jankowich, M. D., Baptiste, J., & Nici, L. (2018). Providence VA Lung Cancer Screening Program: Performance: Comparison of local false positive and invasive procedure rates to published trial data. In A98. Clinical strategies to improve lung cancer early detection: Who is at risk here?

Gao, W., Lu, X., Liu, L., Xu, J., Feng, D., & Shu, Y. (2012). MiRNA-21: A biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biology & Therapy, 13(5), 330–340. https://doi.org/10.4161/cbt.13.5.18722

Guinot, A., Oeztuerk-Winder, F., & Ventura, J. J. (2016). miR-17-92/p38α dysregulation enhances Wnt signaling and selects Lgr6+ cancer stem-like cells during lung adenocarcinoma progression. Cancer Research, 76(13), 4012–4022. https://doi.org/10.1158/0008-5472.CAN-16-0153

Guirado, M., Fernández Martín, E., Fernández Villar, A., Navarro Martín, A., & Sánchez-Hernández, A. (2022). Clinical impact of delays in the management of lung cancer patients in the last decade: Systematic review. Clinical and Translational Oncology, 24(8), 1549–1568. https://doi.org/10.1007/s12094-022-02742-9

Li, C., Wang, H., Jiang, Y., Fu, W., Liu, X., Zhong, R., Zhu, B., Chen, C., Zhu, H., & He, Y. (2022). Advances in lung cancer screening and early detection. Cancer Biology & Medicine, 19(5), 591–608. https://doi.org/10.20892/j.issn.2095-3941.2021.0142

Li, J., Yang, S., Yan, W., Yang, J., Qin, Y. J., Lin, X. L., Xie, R. Y., Wang, S. C., Jin, W., Gao, F., Shi, J. W., Zhao, W. T., Jin, L., Liu, S. M., Peng, F., Chen, C. Y., Chen, H. Y., Lin, H. J., Lao, Y. Z., ... Huang, D. (2015). MicroRNA-19 triggers epithelial–mesenchymal transition of lung cancer cells accompanied by growth inhibition. Laboratory Investigation, 95(9), 1056–1070. https://doi.org/10.1038/labinvest.2015.100

Mitra, R., Adams, C. M., Jiang, W., Greenawalt, E., & Eischen, C. M. (2020). Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nature Communications, 11(1), 968. https://doi.org/10.1038/s41467-019-13950-2

Nooreldeen, R., & Bach, H. (2021). Current and future development in lung cancer diagnosis. International Journal of Molecular Sciences, 22(16), 8661. https://doi.org/10.3390/ijms22168661

Peng, X., Guan, L., & Gao, B. (2018). miRNA-19 promotes non-small-cell lung cancer cell proliferation via inhibiting CBX7 expression. OncoTargets and Therapy, 11, 8865–8874. https://doi.org/10.2147/OTT.S183270

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., ... Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, n71. https://doi.org/10.1136/bmj.n71

Qiu, F., Gu, W. G., Li, C., Nie, S. L., & Yu, F. (2018). Analysis on expression level and diagnostic value of miR-19 and miR-21 in peripheral blood of patients with undifferentiated lung cancer. European Review for Medical and Pharmacological Sciences, 22(23), 8367–8373.

Rahmasari, R., Raekiansyah, M., Azallea, S. N., Nethania, M., Bilqisthy, N., Rozaliyani, A., Budiman, E., Kemala, P., Safari, D., & Sasmono, R. T. (2022). Low-cost SYBR Green-based RT-qPCR assay for detecting SARS-CoV-2 in an Indonesian setting using WHO-recommended primers. Heliyon, 8(11), e11130. https://doi.org/10.1016/j.heliyon.2022.e11130

Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nature Reviews Drug Discovery, 16(3), 203–222. https://doi.org/10.1038/nrd.2016.264

Safari, S., Baratloo, A., Elfil, M., & Negida, A. (2016). Evidence based emergency medicine; Part 4: Pre-test and post-test probabilities and Fagan's nomogram. Emergency, 4(1), 48–51.

Sun, L., Zhou, H., Yang, Y., Chen, J., Wang, Y., She, M., Shen, Z., Xi, Z., Chen, Y., & Ding, D. (2020). Meta-analysis of diagnostic and prognostic value of miR-126 in non-small cell lung cancer. Bioscience Reports, 40(5). https://doi.org/10.1042/BSR20200425

Xia, X. B., Li, J., & Wang, Y. (2017). Evaluation of clinical value of plasma miRNA-20a and miRNA-210 in diagnosis of lung cancer. Journal of Jiangsu University (Medicine Edition), 27, 47–52.

Yang, C., Jia, X., Zhou, J., Sun, Q., & Ma, Z. (2020). The miR-17-92 gene cluster is a blood-based marker for cancer detection in non-small-cell lung cancer. The American Journal of the Medical Sciences, 360(3), 248–260. https://doi.org/10.1016/j.amjms.2020.07.003

Zaporozhchenko, I. A., Morozkin, E. S., Skvortsova, T. E., Ponomaryova, A. A., Rykova, E. Y., Cherdyntseva, N. V., Polovnikov, E. S., Pashkovskaya, O. A., Pokushalov, E. A., Vlassov, V. V., & Laktionov, P. P. (2016). Plasma miR-19b and miR-183 as potential biomarkers of lung cancer. PLOS ONE, 11(10), e0165261. https://doi.org/10.1371/journal.pone.0165261

Zhu, X., Kudo, M., Huang, X., Sui, H., Tian, H., Croce, C. M., & Cui, R. (2021). Frontiers of MicroRNA signature in non-small cell lung cancer. Frontiers in Cell and Developmental Biology, 9. https://doi.org/10.3389/fcell.2021.647690

##submission.downloads##

Publikované

2025-08-21