Reliability Analysis for Dynamic Behaviour, Stiffness, and Strength of Existing Steel Truss Bridge BH77
DOI:
https://doi.org/10.59188/eduvest.v4i11.49989Keywords:
Bridge, Earthquake, Dynamic, Behavior, ReliabiltyAbstract
Railway bridges are old, especially on the Sumatra island and according to earthquake map on 2017 version show an increased risk, it is necessary to analyze the reliability of dynamic behaviour to extend the bridge life and damage can be detected early. The bridge reliability was assessed in terms of natural frequency, deflection, and internal force . The study was conducted on the BH77 Railway Bridge in Tegineneng-Lampung, a through truss type. Reliability analysis with a non-deterministic approach, using the probability concept, variability used is the dimensions of steel profiles based on fabrication drawings and field measurements. The research uses secondary data, one of which is measurement of the circumference of the steel cross section, that influenced by the paint layer, where the paint thickness sample to correct and obtain the actual dimensions. Dynamic behaviour analysis, consisting of modal analysis, Fast Fourier Transform, time history, and First Order Reliabilty Method. The analysis results showed the effect of steel dimension correction compared to the fabrication drawings did not have a significant effect on the changes in the values of natural frequencies, mode shapes, deflections, and internal forces. The reliability of the dynamic behaviour obtained was 99% at all reviews. Which indicates that the bridge is safe against potential resonance, the bridge stiffness is still high, and the axial+moment capacity is still sufficient against static & earthquake loads, as well as good bridge maintenance. The largest deflection point as a reference for placing strain and vibration gauges on structural health monitoring systems.
References
Badan Standardisasi Nasional. (2005). RSNI T-03-2005 Rancangan Standar Nasional Indonesia Tentang Perencanaan Struktur Baja untuk Jembatan.
Badan Standardisasi Nasional. (2016). SNI 1725:2016 Pembebanan untuk Jembatan.
Badan Standarisasi Nasional. (2016). SNI 2833:2016 Perencanaan jembatan terhadap beban gempa.
Badan Standarisasi Nasional. (2019). SNI 1726:2019 Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan nongedung (Issue 8).
Departemen Perhubungan. (1995). The Design, Fabrication, and Supply of Steel Railway Bridges for Java and Sumatra CONTRACT NO.1/BPPJ/KA/CONTR/VII/1995.
Dewi SM, Dobana K, Wisnumurti, Z. A. (2018). Keandalan Struktur dan Infrastruktur. UB Press.
Hardiyatmo, H. C. (2022). Rekayasa Gempa. Gadjah Mada University Press.
Kementerian Perhubungan. (2018). Review Rencana Induk Perkeretaapian Nasional.
Kementerian PUPR. (2019). Informasi Statistik. Pusat Data dan Teknologi Informasi PUPR.
Larasati, A. M. (2022). Analisis Keandalan Struktur Jembatan Kereta Api Rangka Baja (Studi Kasus Jembatan Baja BH77). Tesis. Universitas Mercubuana.
Larasati, A. M., Pariatmono, Erlangga Rizqi F, Mawardi Amin, Resmi Bestari M, Dimas Aryo S, Mulyadi Sinung H, Dwi Agus P, Wimpie Agoeng N. A, Thiya Fiantika, & Emeralda Insani. N. S. P. J. D. S. P. (2022). Measurement of Geometric Variations of a Railway Truss Bridge (Case Study: BH77 Railway Bridge). Majalah Ilmiah Pengkajian Industri, 16(1). https://doi.org/10.29122/mipi.v16i1.5177
Menteri Perhubungan. (2012). Peraturan Menteri Perhubungan Nomor: PM.60 Tahun 2012 Tentang Persyaratan Teknis Jalur Kereta Api.
Menteri Perhubungan. (2018). Peraturan Menteri Perhubungan Republik Indonesia Nomor KP 2128 Tahun 2018 Tentang Rencana Induk Perkeretaapian Nasional.
Nasution, A. (2016). Rekayasa Gempa & Sistem Struktur Tahan Gempa. Penerbit ITB.
Nurfaizi, Yudistira, T., & Suhendi, C. (2022). Karakterisasi Site Effect dan Frekuensi Natural Jembatan Kereta Api BH77 dengan Menggunakan Data Mikrotremor. 1–7.
Published
Issue
Section
License
Copyright (c) 2024 Dimas Aryo Suseno, Pariatmono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.