Sentiment Analysis For The 2024 Presidential Election (Pilpres) Using BERT CNN

Authors

  • Daffa Fadhilah Putra Telkom University, Indonesia
  • Yuliant Sibaroni Telkom University, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i11.49961

Keywords:

Sentiment, X, 2024 Presidential Election, BERT, CNN, Sentiment Analysis

Abstract

The 2024 presidential election in Indonesia has generated tremendous enthusiasm on social media, particularly on the X platform. This research aims to analyze public sentiment regarding the 2024 presidential election by utilizing BERT and CNN methods. Sentiment analysis in the digital era is key to understanding the diverse social perspectives within society. The use of BERT, which has proven effective in understanding natural language context, and CNN, initially used for image analysis, will help in understanding public sentiment on X leading up to the 2024 presidential election. The research results show that the BERT model provides the best performance with an average accuracy of 90.02%, while CNN achieved 88.19%. The sentiment-based predictions using BERT for the three presidential candidates indicate that Prabowo Subianto is predicted to receive the highest support at 43.82%, followed by Ganjar Pranowo with 33.83%, and Anies Baswedan with 22.35%. A comparison of the prediction results with the actual election results shows that Prabowo Subianto was predicted to receive 43.82% of the vote, while the actual election results reached 58.58%, a difference of 14.76%. Ganjar Pranowo was predicted to receive 33.83% of the vote, while the actual results were 16.47%, with a difference of 17.36%. Anies Baswedan was predicted to receive 22.35% of the vote, with the actual result being 24.95%, a difference of 2.60%. This study indicates that the BERT model is effective in providing an accurate depiction of the 2024 Indonesian presidential election results.

References

Aji Andika, L., & Amalia Nur Azizah, P. (2019). Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier.

Cahyani, R. R., & Cahyani, R. (2020). Analisis Sentimen Pada Media Sosial Twitter Terhadap Tokoh Publik Peserta Pilpres 2019. MATICS, 12(1), 79. https://doi.org/10.18860/mat.v12i1.8356

Devlin, J. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805.

Hulu, A. M. F., & Lhaksmana, K. M. (2019). Analisis Sentimen Politik pada Twitter Menggunakan Metode Support Vector Machine (Studi Kasus: Pilpres 2019). EProceedings of Engineering, 6(2).

Informasi, J. T. (2019). Rizka Ardiansyah. ScientiCO : Computer Science and Informatics Journal, 2(1).

Juanita, S. (2020). Analisis Sentimen Persepsi Masyarakat Terhadap Pemilu 2019 Pada Media Sosial Twitter Menggunakan Naive Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 4(3), 552. https://doi.org/10.30865/mib.v4i3.2140

Jungherr, A., Jürgens, P., & Schoen, H. (2012). Why the pirate party won the german election of 2009 or the trouble with predictions: A response to tumasjan, a., sprenger, to, sander, pg, & welpe, im “predicting elections with twitter: What 140 characters reveal about political sentiment.” Social Science Computer Review, 30(2), 229–234.

Kurniawan, I., & Susanto, A. (2019a). Implementasi Metode K-Means dan Naà ve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Jurnal Eksplora Informatika, 9(1), 1–10.

Kurniawan, I., & Susanto, A. (2019b). Implementasi Metode K-Means dan Naïve Bayes Classifier untuk Analisis Sentimen Pemilihan Presiden (Pilpres) 2019. Eksplora Informatika, 9(1), 1–10. https://doi.org/10.30864/eksplora.v9i1.237

Lecun, Y., Bottou, L. E., & Bengio, Y. (1998). PH Abstract|,“. Gradient-Based Learning Applied to Document Recognition.

Naquitasia, R., Fudholi, D. H., & Iswari, L. (2022). Analisis Sentimen Berbasis Aspek pada Wisata Halal dengan Metode Deep Learning. Jurnal Teknoinfo, 16(2), 156–164.

Nasichuddin, M. A., Adji, T. B., & Widyawan, W. (2018). Performance improvement using CNN for sentiment analysis. IJITEE (International Journal of Information Technology and Electrical Engineering), 2(1), 9–14.

Putri, C. A. (2020). Analisis Sentimen Review Film Berbahasa Inggris Dengan Pendekatan Bidirectional Encoder Representations from Transformers. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 6(2), 181–193.

Rahmanda, R., & Setiawan, E. B. (2022). Word2Vec on Sentiment Analysis with Synthetic Minority Oversampling Technique and Boosting Algorithm. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 6(4), 599–605.

Rakhlin, A. (2016). Convolutional neural networks for sentence classification. GitHub, 6, 25.

Sabily, A. F., Adikara, P. P., & Fauzi, M. A. (2019). Analisis Sentimen Pemilihan Presiden 2019 pada Twitter menggunakan Metode Maximum Entropy (Vol. 3, Issue 5). http://j-ptiik.ub.ac.id

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to fine-tune bert for text classification? Chinese Computational Linguistics: 18th China National Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings 18, 194–206.

Vonega, D. A., Fadila, A., & Kurniawan, D. E. (2022). Analisis Sentimen Twitter Terhadap Opini Publik Atas Isu Pencalonan Puan Maharani dalam PILPRES 2024. Journal of Applied Informatics and Computing, 6(2), 129–135.

Y. Ajitama, S. S. Prasetiyowati, and Y. S. (2021). “Analisis Sentimen Terhadap Tweet Mengenai Pemilihan Presiden Amerika Serikat Tahun 2020 Menggunakan Metode BERT,.”

Downloads

Published

2024-11-20