Analysis of the Space Frame Structure of the Cileungsi Fly Over Tower Bogor Regency
DOI:
https://doi.org/10.59188/eduvest.v4i11.44776Keywords:
Space FRame, Flyover, the balls, steel pipesAbstract
This research is part of the plan of the Bogor Regency government, especially Cileungsi District, in arranging the Cileungsi flyover which is currently filled with garbage and used as a shadow terminal, making the area look slum. The arrangement effort is made to create a comfortable, neat flyover that can become an icon of Bogor Regency. The research aims to produce a portal tower flyover design that is aesthetic, unique, sturdy, and meets the strength and stability standards of the structure according to local conditions. The analysis was carried out using SAP2000 software to model the three-dimensional space structure and identify the strength, stability, and deflection of the structure. The LRFD (Load Resistance Factor Design) method is used in calculating the bearing capacity of the structure. The results of the analysis show that the space frame structure made of steel pipes has stable and rigid behavior, meeting all work loads, including dead loads, live loads, wind, and earthquakes. The design of the 13-meter deep pile foundation has also been proven to be able to withstand loads safely. The design of the space frame structure made of steel pipes for the Cileungsi flyover portal tower is declared strong, stable, and safe to implement. This structure can be used as a new icon for Bogor Regency, especially Cileungsi District. The implementation of this design requires detailed depiction as a construction guideline in the field.
References
Abd El Gawad, N. S., Al-Hagla, K. S., & Nassar, D. M. (2019). Place making as an approach to revitalize neglected urban open spaces (NUOS): a case study on Rod El Farag flyover in Shoubra, Cairo. Alexandria Engineering Journal, 58(3), 967–976.
Bhandari, U., Chang, K., & Neben, T. (2019). Understanding the impact of perceived visual aesthetics on user evaluations: An emotional perspective. Information & Management, 56(1), 85–93.
Brown, N. C., & Mueller, C. T. (2016). Design for structural and energy performance of long span buildings using geometric multi-objective optimization. Energy and Buildings, 127, 748–761.
Frangopol, D. M. (2019). Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges 1. In Structures and infrastructure systems (pp. 5–29). Routledge.
Ghali, A., Neville, A., & Brown, T. (2017). Structural analysis: a unified classical and matrix approach. Crc Press.
Kanli, E. (2021). Experimental Investigations on Joining Techniques for Paper Structures: A Showcase of Principles, Case Studies & Novel Connections Created in the Spirit of Architectural Engineering (Vol. 60). Springer Nature.
Kociecki, M., & Adeli, H. (2015). Shape optimization of free-form steel space-frame roof structures with complex geometries using evolutionary computing. Engineering Applications of Artificial Intelligence, 38, 168–182.
Plocher, J., & Panesar, A. (2019). Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Materials & Design, 183, 108164.
Ravbar, P., Branson, K., & Simpson, J. H. (2019). An automatic behavior recognition system classifies animal behaviors using movements and their temporal context. Journal of Neuroscience Methods, 326, 108352.
Rustiadi, E., Pravitasari, A. E., Setiawan, Y., Mulya, S. P., Pribadi, D. O., & Tsutsumida, N. (2021). Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities, 111, 103000.
Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of Clinical Epidemiology, 98, 146–151.
Sharafi, P., Samali, B., Ronagh, H., & Ghodrat, M. (2017). Automated spatial design of multi-story modular buildings using a unified matrix method. Automation in Construction, 82, 31–42.
Truong, V.-H., Nguyen, P.-C., & Kim, S.-E. (2017). An efficient method for optimizing space steel frames with semi-rigid joints using practical advanced analysis and the micro-genetic algorithm. Journal of Constructional Steel Research, 128, 416–427.
Wang, J., Qin, M., Xu, X., & Cai, J. (2022). Effects of familiarity and likability on music masking of aircraft flyover noise for young people. Applied Acoustics, 199, 109000.
Wang, R., Zhao, J., Meitner, M. J., Hu, Y., & Xu, X. (2019). Characteristics of urban green spaces in relation to aesthetic preference and stress recovery. Urban Forestry & Urban Greening, 41, 6–13.
Anonim. Tata cara perencanaan beton untuk bangunan gedung SNI-03-2847-2020 dan ACI 318-2002
Anonim. Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung, SNI-03-1726-2020
Anonim. Spesifikasi untuk bangunan gedung baja struktural (ANSI/AISC 360-16, IDT), SNI03-1729-2020
Anonim. Beban minimum untuk perancangan bangunan gedung dan struktur lain , SNI 1727-2019
Anonim. Tata cara pemilihan dan modifikasi gerak tanah permukaan untuk perencanaan gedung tahan gempa , SNI 8899:2020
Anonim. Ketentuan seismik untuk bangunan gedung baja structural (ANSI/AISC 341-16, IDT), SNI 7860:2020
Anonim. Sambungan terprakualifikasi untuk rangka momen khusus dan menengah baja pada aplikasi seismik, (ANSI/AISC 358-16, IDT), SNI 7972:2020
Setiawan, Agus. Perencanaan Struktur Baja dengan Metode LRFD (Berdasarkan SNI 03-1729-2002). Jakarta: Erlangga. 2008
Dewobroto, W. Struktur Baja Perilaku, Analisis, dan Desain-AISC 2010. Jakarta: Grand Melia. 2011
Ghali, A., Neville, A., & Brown, T. (2017). Structural analysis: a unified classical and matrix approach. Crc Press.
Published
Issue
Section
License
Copyright (c) 2024 Budiono Budiono, Singgih Irianto, Budi Arief, Lirawati Lirawati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.