Calibration Of Prototype "Ultrasonic Surface Roughmeter" With GAP Man Profilometer

Authors

  • Eko Wahyu Utomo Universitas Langlangbuang Bandung
  • Pratikso Pratikso Universitas Islam Sultan Agung Semarang
  • Siegfried Siegfried Universitas Langlangbuana, Bandung

DOI:

https://doi.org/10.59188/eduvest.v4i11.40139

Keywords:

roughmeter, ultrasonic, highway, roadworthiness

Abstract

In road network evaluations, road performance is assessed from structural and functional aspects. Typically, road surface roughness measurements rely on expensive, imported instruments. Therefore, this research developed a prototype roughness measuring tool using an ultrasonic sensor, which is more cost-effective. This study aims to calibrate the "Ultrasonic Surface Roughmeter" prototype and evaluate its accuracy in measuring the International Roughness Index (IRI) as a reference for road maintenance. The prototype was tested through calibration with the standard tool, Gap Man Working Profilometer. Data were collected from several road segments of a specified length, and measurement results were analyzed through descriptive statistics to compare data from both tools. The calibration results indicate that the prototype achieved a high accuracy level, with a correlation value of 99.51% and a confidence level of 97.05%. The Cronbach's alpha value of 1.0 shows excellent internal consistency, with an average measurement difference of approximately 3.11%.The "Ultrasonic Surface Roughmeter" prototype can serve as a valid and economical alternative for measuring road surface roughness

References

Alhasan, A. A. (2015a). Quantifying Road Roughness: Multiresolution And Near Real-Time Analysis. Iowa State University.

Alhasan, A. A. (2015b). Quantifying Road Roughness: Multiresolution And Near Real-Time Analysis. Iowa State University.

Alhasan, A. A., White, D. J., De Brabanter, K., Vennapusa, P., Aggarwal, R., Westport, C., & Ashlock, J. (N.D.). Quantifying Road Roughness: Multiresolution And Near Real-Time Analysis.

ASTM International. (2003). Standard Practice For Computing International Roughness Index Of Roads From Longitudinal Profile Measurements. ASTM International, E 1926(98), 1–18. Www.Astm.Org,

Bahaaeldin Hassan, S. (2021). Calibration Of IRI-Based PSI Equation Using Updated Quarter-Car Calibration Parameters. Https://Researchrepository.Wvu.Edu/Etd

Baladi, & GY. (1991). Pavement Condition Index - Remaining Service Lite. Novak, EC, 63–90. Https://Doi.Org/10.1520/STP177955

Bulaha, N. (2018). Calculations Of Surface Roughness 3d Parameters For Surfaces With Irregular Roughness. Engineering For Rural Development, 17, 1437–1444. Https://Doi.Org/10.22616/Erdev2018.17.N256

Chen, S. L., Lin, C. H., Tang, C. W., Chu, L. P., & Cheng, C. K. (2020). Research On The International Roughness Index Threshold Of Road Rehabilitation In Metropolitan Areas: A Case Study In Taipei City. Sustainability (Switzerland), 12(24), 1–19. Https://Doi.Org/10.3390/Su122410536

Chen, S.-L., Lin, C.-H., Tang, C.-W., Chu, L.-P., & Cheng, C.-K. (2020). Research On The International Roughness Index Threshold Of Road Rehabilitation In Metropolitan Areas: A Case Study In Taipei City. Sustainability, 12(24), 10536.

Dewi Asri Anugrah. (2021). Analisa Penilaian Kondisi Jalan Raya Dengan Metode Surface Distress Index (SDI) Dan Present Service Ability Index (PSI) Studi Kasus : Duri Kecamatan Mandau. Universitas Islam Riau.

Direktorat Jenderal Bina Marga. (2011). Direktorat Jenderal Bina Marga, Survei Kondisi Jalan Untuk Pemeliharaan Rutin.

Golov, E., Evtyukov, S., Protsuto, M., Evtyukov, S., & Sorokina, E. (2022). Influence Of The Road Surface Roughness (According To The International Roughness Index) On Road Safety. Transportation Research Procedia, 63, 999–1006. Https://Doi.Org/10.1016/J.Trpro.2022.06.099

Pekerjaan Umum Indonesia. (1995). Manual Pemeliharaan Rutin Untuk Jalan Nasional Dan Jalan Propinsi Jilid Ii : Metode Perbaikan Standar. Https://Pu.Go.Id/Pustaka/Biblio/Manual-Pemeliharaan-Rutin-Untuk-Jalan-Nasional-Dan-Jalan-Propinsi-Jil...

Pemerintah Republik Indonesia. (2004). Undang-Undang Republik Indonesia Nomor 38 Tahun 2004 Tentang Jalan.

Prijo Sadewo. (1995). Manajeman Pemeliharaan Jalan. Institut Teknologi Sepuluh Nopember.

Richard W. V. Uguy, & Vanda S. Rompis. (2021). Penentuan Jenis Pemeliharaan Jalan Dengan Menggunakan Metode Bina Marga (Studi Kasus: Ruas Jalan Kelurahan Tondangow Kecamatan Tomohon Selatan). Jurnal Ilmiah Realtech, 17(2), 34–38.

Sayers, M. M. (1995). On The Calculation Of International Roughness Index From Longitudinal Road Profile. Committee On Surface Properties-Vehcle Interaction, 1501, 1–12. Https://Trid.Trb.Org/View/452992#:~:Text=IRI%20is%20calculated%20from%20a,Index%20with%20units%20of%20slope.

Sayers, M. W., Gillespie, T. D., & Paterson, W. D. 0. (1986a). Guidelines For Conducting And Calibrating Road Roughness Measurements.

Sayers, M. W., Gillespie, T. D., & Paterson, W. D. O. (1986b). Guidelines For Conducting And Calibrating Road Roughness Measurements. World Bank.

SNI 03-3426-1994. (1994). Tata Cara Survei Kerataan Permukaan Perkerasan Jalan Dengan Alat Ukur Kerataan NAASRA. Https://Binamarga.Pu.Go.Id/Index.Php/Nspk/Detail/Sni-03-3426-1994-Tata-Cara-Survai-Kerataan-Permukaan-Perkerasan-Jalan-Dengan-Alat-Ukur-Kerataan-Naasra

Suwardo, & Heru Budi Utomo. (2020). Pengukuran Dan Perekaman Data Ketidakrataan Perkerasan Jalan Dengan Sensor Ultrasonik Pada Rolling Straight Edge. Jurnal Aplikasi Teknik Sipil, 18(2), 295–306. Http://Iptek.Its.Ac.Id/Index.Php/Jats

Transportation Association Of Canada. (2006). Performance Measures For Road Networks: A Survey Of Canadian Use.

Wahyu, E., Pratikso, & Siegfried. (2023). Typical Roughness Values From Geophone-Based Roughness Meter Data For Evaluating Road Functional Performance. International Conference On Engineering Science, Innovation Technology, And Sustainability 2023 (ICESIT 2023) Will Be Held On 26th-27th October 2023 At Yogyakarta, Indonesia, 1–11. Https://Drive.Google.Com/Drive/Folders/1kybvd-Hhx3oqZBY9zCvlV4z9UY494GBA

Yoga Triardhana, Bandi Sasmito, & Firman Hadi. (2021). Identifikasi Kerusakan Jalan Menggunakan Metode Deep Learning (DL) Model Covolutional Neural Networks (CNN). Jurnal Geodesi Undip Juli, 10.

Downloads

Published

2024-11-22