Implementasi Algoritma XGBoost untuk Memprediksi Harga Jual Cabai Rawit di DKI Jakarta
DOI:
https://doi.org/10.59188/eduvest.v4i9.3784Keywords:
XGBoost Algorithm, Price Prediction, Cayenne Pepper, Agricultural Markets, Predictive AnalyticsAbstract
This research focuses on applying the XGBoost algorithm to analyze and predict cayenne pepper prices. The main aim is to exploit XGBoost's exceptional capability to manage large datasets and discern intricate patterns for precise price forecasting. The dataset comprises historical cayenne pepper price data, along with pertinent economic and climatic factors. The XGBoost model was developed and validated on this dataset, with its performance assessed using metrics. The results indicated a high level of accuracy, achieving an R² score of 99% on the training set and 92% on the test set, reflecting a strong alignment between predicted and actual prices. Moreover, the model attained an average cross-validation score of 96%, reinforcing its robustness and reliability. These findings highlight XGBoost's efficacy in agricultural price prediction, offering stakeholders a potent tool for data-driven decision-making. This study enriches the literature on machine learning applications in agriculture and emphasizes XGBoost's potential to enhance predictive accuracy and operational efficiency.
References
REFERENCES
Ananda, D., Pertiwi, A., & Muslim, M. A. (2022). Prediksi Rating Aplikasi Playstore Menggunakan Xgboost Prediksi Rating Aplikasi Playstore Menggunakan Xgboost. ResearchGate, October 2020, 6.
Asikin, M. Z., Fadilah, M. O., Saputro, W. E., Aditia, O., & Ridzki, M. M. (2024). The Influence Of Digital Marketing On Competitive Advantage And Performance of Micro, Small And Medium Enterprises. International Journal of Social Service and Research, 4(03), 963–970.
Asselman, A., Khaldi, M., & Aammou, S. (2023). Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interactive Learning Environments, 31(6), 3360–3379. https://doi.org/10.1080/10494820.2021.1928235
Bayona-Oré, S., Cerna, R., & Hinojoza, E. T. (2021). Machine learning for price prediction for agricultural products. WSEAS Transactions on Business and Economics, 18, 969–977. https://doi.org/10.37394/23207.2021.18.92
Budholiya, K., Shrivastava, S. K., & Sharma, V. (2022). An optimized XGBoost based diagnostic system for effective prediction of heart disease. Journal of King Saud University - Computer and Information Sciences, 34(7), 4514–4523. https://doi.org/10.1016/j.jksuci.2020.10.013
Deviyanto, A., & Aji, J. M. M. (2023). Fluktuasi Harga dan Efisiensi Pemasaran Cabai Rawit di Desa Sepanjang Kecamatan Glenmore Kabupaten Banyuwangi. Jurnal Pertanian Agros, 25(1), 529–537.
Et. al., J. A. (2021). Prediction of House Price Using XGBoost Regression Algorithm. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 2151–2155. https://doi.org/10.17762/turcomat.v12i2.1870
Harga, P., Rawit, C., Di Kota, H., Menggunakan, J., Markov, R., Budiarti, D. I., Kholijah, G., Yurinanda, S., & Mardhotillah, B. (2023). Price Prediction of Green Cayenne Pepper in Kota Jambi Using Markov Chain. 2(1), 2023.
Komaria, V., Maidah, N. El, & Furqon, M. A. (2023). Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee. Komputika : Jurnal Sistem Komputer, 12(2), 37–47. https://doi.org/10.34010/komputika.v12i2.10644
Kusumiyati, K., Putri, I. E., & Munawar, A. A. (2021). Model Prediksi Kadar Air Buah Cabai Rawit Domba (Capsicum frutescens L.) Menggunakan Spektroskopi Ultraviolet Visible Near Infrared. Agro Bali: Agricultural Journal, 4(1), 15–22. https://doi.org/10.37637/ab.v0i0.615
M’hamdi, O., Takács, S., Palotás, G., Ilahy, R., Helyes, L., & Pék, Z. (2024). A Comparative Analysis of XGBoost and Neural Network Models for Predicting Some Tomato Fruit Quality Traits from Environmental and Meteorological Data. Plants, 13(5). https://doi.org/10.3390/plants13050746
Nababan, A. A., Jannah, M., Aulina, M., & Andrian, D. (2023). Prediksi Kualitas Udara Menggunakan Xgboost Dengan Synthetic Minority Oversampling Technique (Smote) Berdasarkan Indeks Standar Pencemaran Udara (Ispu). JTIK (Jurnal Teknik Informatika Kaputama), 7(1), 214–219. https://doi.org/10.59697/jtik.v7i1.66
Nasution, M. K., Saedudin, R. R., & Widartha, V. P. (2021). Perbandingan Akurasi Algoritma Naïve Bayes Dan Algoritma Xgboost Pada Klasifikasi Penyakit Diabetes. E-Proceeding of Engineering, 8(5), 9765–9772.
Tran, N.-Q., Nguyen Ngoc, T., Tran, Q., Felipe, A., Huynh, T., Tang, A., & Nguyen, T. (2023). Predicting Agricultural Commodities Prices with Machine Learning: A Review of Current Research.
Windhy, A. M., & Jamil, A. S. (2021). Peramalan Harga Cabai Merah Indonesia : Pendekatan ARIMA. Jurnal Agriekstensia, 20(1), 78–87.
Yuditya, A., Hardjanto, A., & Sehabudin, U. (2023). Fluktuasi Harga dan Integrasi Pasar Cabai Merah Besar (Studi Kasus: Pasar Induk kramat Jati dan Pasar Eceran di DKI Jakarta). Indonesian Journal of Agriculture Resource and Environmental Economics, 2(1), 1–13. https://doi.org/10.29244/ijaree.v2i1.50669
Published
Issue
Section
License
Copyright (c) 2024 Dhafin Riando, Afiyati
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.