Expression Of Osteoblasts In Periodontitis With Material Preservation Pocket Technique Gengigel® (Hyaluronic Acid 0.2%)

Authors

  • Dwi wahyu indrawati Universitas Muhammadiyah Sidoarjo, Indonesia
  • Ernie Maduratna Setyawatie Universitas Airlangga, Indonesia
  • A. Retno Pudji Rahayu Universitas Airlangga, Indonesia
  • Rizky Briliant Syah Manurung Universitas Airlangga, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i10.1503

Keywords:

Osteoblasts, Hyaluronic Acid, Periodontitis, Preservation Socket

Abstract

Hyaluronic acid as a socket preservation material can absorb large amounts of hydration and regulate appropriate pressure in the surrounding tissue, resulting in expansion of the extracellular space. The socket preservation technique used is a solution to bone loss due to tooth extraction. However, research on the hyaluronic acid (Gengigel) material in sockets with periodontitis has not yet been clearly studied. In this study, we will see an increase in the number of osteoblasts in the alveolar bone after tooth extraction in Wistar rats with periodontitis. To determine the increase in the number of osteoblasts after administering Hyaluronic acid to the tooth sockets of Wistar rats with periodontitis. An increase in the number of osteoblast cells was observed using a multi-head light microscope in 5 areas of the preparation at 400x magnification. The measurement results from 5 areas are averaged and a calculation is obtained for one preparation. There are 2 groups that will be used in this research, namely the Control group (without treatment), HA (given Gengigel). Each group was tested at 14 and 21 days after administering the material. The research results showed that the Hyaluronic Acid (Gengigel) group had a higher number of osteoblast cells than the control group. The one-way ANOVA test showed an average significance result of 0.000 (p < 0.05) for all groups. This indicates that there was a significant change in each treatment group. Giving hyaluronic acid to the tooth sockets of Wistar rats with periodontitis can increase the number of osteoblast cells.

References

Akter, F. (2016). Principles of tissue engineering. In Tissue engineering made easy (pp. 3–16). Elsevier.

Carranza, F. A., Newman, M. G., Takei, H. H., & Klokkevold, P. R. (2019). Newman and carranza’s clinical periodontology. (No Title).

Casale, M., Moffa, A., Vella, P., Sabatino, L., Capuano, F., Salvinelli, B., Lopez, M. A., Carinci, F., & Salvinelli, F. (2016). Hyaluronic acid: Perspectives in dentistry. A systematic review. International Journal of Immunopathology and Pharmacology, 29(4), 572–582.

Hassumi, J. S., Mulinari-Santos, G., Fabris, A. L. da S., Jacob, R. G. M., Goncalves, A., Rossi, A. C., Freire, A. R., Faverani, L. P., & Okamoto, R. (2018). Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. Journal of Applied Oral Science, 26, e20170326.

Helmy, M. A. (2017). Review of socket preservation technique. EC Dental Science, 14, 7–14.

Jiang, N., Guo, W., Chen, M., Zheng, Y., Zhou, J., Kim, S. G., Embree, M. C., Song, K. S., Marao, H. F., & Mao, J. J. (2016). Periodontal ligament and alveolar bone in health and adaptation: tooth movement. Tooth Movement, 18, 1–8.

Kanning, N. C., Curtice, S. A., & Haggerty, C. J. (2015). Exposure and Bonding of an Impacted Tooth. Atlas of Operative Oral and Maxillofacial Surgery, 2.

Lin, J.-H., Tu, C.-C., Chen, Y.-W., Wang, C.-Y., Liu, C.-M., Kuo, M. Y.-P., & Chang, P.-C. (2019). Influence of adjacent teeth absence or extraction on the outcome of non-surgical periodontal therapy. International Journal of Environmental Research and Public Health, 16(22), 4344.

Mani, A., Pawar, B., Pendyala, G., Mustilwar, R., Bhosale, A., & Bhadange, S. (2016). Hyaluronic acid-A boon to periodontal therapy. Pravara Med Rev, 8(1), 8–13.

Mohammed, A. A., Elsherbini, A. M., Ibrahim, F. M., El-Meadawy, S. M., & Youssef, J. M. (2021). Biological effect of the nanocrystalline calcium sulfate bone graft in the periodontal regeneration. Journal of Oral Biology and Craniofacial Research, 11(1), 47–52.

Müller, J., Gorressen, S., Grandoch, M., Feldmann, K., Kretschmer, I., Lehr, S., Ding, Z., Schmitt, J. P., Schrader, J., & Garbers, C. (2014). Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Research in Cardiology, 109, 1–13.

Ouchi, T., & Nakagawa, T. (2020). Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regenerative Therapy, 14, 72–78.

Primadina, N., Basori, A., & Perdanakusuma, D. S. (2019). Proses penyembuhan luka ditinjau dari aspek mekanisme seluler dan molekuler. Qanun Medika-Medical Journal Faculty of Medicine Muhammadiyah Surabaya, 3(1), 31–43.

Romanò, C. L., Vecchi, E. De, Bortolin, M., Morelli, I., & Drago, L. (2017). Hyaluronic acid and its composites as a local antimicrobial/antiadhesive barrier. Journal of Bone and Joint Infection, 2(1), 63–72.

Saima, S., Jan, S. M., Shah, A. F., Yousuf, A., & Batra, M. (2016). Bone grafts and bone substitutes in dentistry. Journal of Oral Research and Review, 8(1), 36–38.

Senra, M. R., de Lima, R. B., Souza, D. de H. S., Marques, M. de F. V., & Monteiro, S. N. (2020). Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft. Journal of Materials Research and Technology, 9(4), 7190–7200.

Setiawati, R., & Rahardjo, P. (2019). Bone development and growth. Osteogenesis and Bone Regeneration, 10.

Setiawatie, E. M., Widiyanti, P., Ryan, M., & Rubianto, M. (2019). Carbonate hydroxyapatite-hyaluronic acid as bone healing accelerator: in-vitro and in-vivo studies on the alveolar bone of wistar rats. Journal of International Dental and Medical Research, 12(4), 1280–1286.

Downloads

Published

2024-10-20