The Potential Of Superoxide Dismutase Enzyme From Tomato Fruit (Solanum Lycopersicum) To Repair Collagen Damage In 3t3 Fibroblast Cells Exposed To Ultraviolet A Radiation

Authors

  • Rosliana Patandung Fakultas Farmasi, Universitas Setia Budi Surakarta, Indonesia
  • Ana Indrayati Fakultas Farmasi, Universitas Setia Budi Surakarta, Indonesia
  • Jason Merari P Fakultas Farmasi, Universitas Setia Budi Surakarta, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i6.1471

Keywords:

SOD Enzyme Extract, Fibroblast Cells, Cell Viability, Collagen Deposition, Photoaging, UV A rays

Abstract

UV A radiation can cause photoaging to the skin which is show by a decrease in the amount of collagen and death of fibroblast cell. This study aimed to determine the SOD enzyme activity of tomatoes (Solanum lycopersycum Mill.) influences the increase of viability of fibroblast cell and deposition of collagen. The study design used a completely randomized design (CRD) with 11 treatments and 3 repetitions. The procedures of this study include: (1) extracting SOD enzymes (2) making bradford reagents (3) making standard protein solutions (4) measuring total protein content (5) testing the antioxidant activity of SOD enzymes (6) preparing 3T3 fibroblast cells (7) Cell exposure 3T3 fibroblasts with UV A rays (8) preparation of tomato SOD enzyme stock solutions (9) determination of cell viability and collagen deposition. Data analized by normality test, homogeneity test, one way ANOVA test, tuckey test and dunnet test. The results of SOD enzyme activity showed the highest percent inhibition was 77.83%. Highest value of percent viability of fibroblast cells that were exposed to UV A rays after given 90% SOD enzyme treatment was 233.00% and collagen deposition was 157.67%. The results showed that variations in the SOD enzyme concentration of tomatoes had a significant effect on cell viability and collagen deposition in fibroblast cells. with a value of sig = 0,000 (p <α). Based on the result, we can concluded that SOD enzyme from tomatoe fruit show significant activity as anti-photoaging.

References

Arsiwala, S., Tahiliani, S., Jerajani, H., Chandrashekhar, B. S., Aurangabadkar, S., Kohli, M., Savardekar, P., Sarangi, K., Kharkar, R. D., & Shah, F. (2013). Evaluation of topical anti-wrinkle and firming (AWF) for women, antiwrinkle and firming (AFM) for men and deep wrinkles for wrinkles on face and neck. Asian Journal of Pharmaceutical and Clinical Research, 6(3), 86–89.

Darliana, S. (2009). Atlas Tumbuhan Obat Jilid 6. Jakarta: PT Pustaka.

Dewi, M., & Naufal, Z. (2011). Ekstraksi Antioksidan (Likopen) Dari Buah Tomat Dengan Menggunakan Solven Campuran, N–Heksana, Aseton, Dan Etanol.

Draelos, Z. D. (2021). Cosmetic dermatology: products and procedures. John Wiley & Sons.

Eveline, E., Siregar, T. M., & Sanny, S. (2014). Studi aktivitas antioksidan pada tomat (Lycopersicon esculentum) konvensional dan organik selama penyimpanan. Prosiding Sains Nasional Dan Teknologi, 1(1).

Febriayanti, M. (2013). Aktivitas Antioksidan Ekstrak Etanol dan Fraksi-Fraksi Daun Ekor Kucing (Acalypha hispida Burm. F) dengan Metode Penghambatan Reduksi Water Soluble Tetrazolium Salt-1 (WST-1). FITOFARMAKA: Jurnal Ilmiah Farmasi, 3(2), 1–6.

Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A., Ameen, O. M., & Lawal, A. (2010). Antioxidants: Its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry, 4(8), 142–151.

Indrayati, A., Asyarie, S., Suciati, T., & Retnoningrum, D. S. (2016). Pengaruh Superoksida Dismutase Rekombinan Staphylococcus equorum Terhadap Viabilitas Sel dan Deposisi Kolagen Pada Sel Fibroblas 3T3 Yang Dipaparkan UVA. Jurnal Farmasi Indonesia, 13(1), 34–40.

Isfardiyana, S. H. (2014). Pentingnya Melindungi Kulit Dari Sinar Ultraviolet Dancara Melindungikulit Dengan Sunblock Buatan Sendiri. Asian Journal of Innovation and Entrepreneurship (AJIE), 3(2), 126–133.

Kammeyer, A., & Luiten, R. M. (2015). Oxidation events and skin aging. Ageing Research Reviews, 21, 16–29.

Khan, A., Bai, H., Liu, E., Chen, M., Yu, C., Wang, R., Khan, A., & Bai, Z. (2018). Protective effect of neferine against UV-B-mediated oxidative damage in human epidermal keratinocytes. Journal of Dermatological Treatment, 29(7), 733–741.

Kong, S.-Z., Li, D.-D., Luo, H., Li, W.-J., Huang, Y.-M., Li, J.-C., Hu, Z., Huang, N., Guo, M.-H., & Chen, Y. (2018). Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin. Experimental Gerontology, 103, 27–34.

Mueller, S., Riedel, H.-D., & Stremmel, W. (1997). Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood, The Journal of the American Society of Hematology, 90(12), 4973–4978.

Pandel, R., Poljšak, B., Godic, A., & Dahmane, R. (2013). Skin photoaging and the role of antioxidants in its prevention. International Scholarly Research Notices, 2013(1), 930164.

Prasetyorini, P., Moerfiah, M., Wardatun, S., & Rusli, Z. (2014). Potensi Antioksidan Berbagai Sediaan Buah Sirsak [Anonna Muricata Linn.

Ramadhan, P. (2015). Mengenal antioksidan. Yogyakarta. Graha Ilmu.

Stojiljković, D., Pavlović, D., & Arsić, I. (2014). Oxidative stress, skin aging and antioxidant therapy. Acta Fac. Med. Naissensis, 31, 207–217.

Tzanetakou, I. P., Katsilambros, N. L., Benetos, A., Mikhailidis, D. P., & Perrea, D. N. (2012). “Is obesity linked to aging?”: adipose tissue and the role of telomeres. Ageing Research Reviews, 11(2), 220–229.

Downloads

Published

2024-06-25