Comparison Of Single Moving Average And Winter Exponential Smoothing Methods In Predicting The Number Of Divorce Cases At The Religious Court Of Cibinong

Authors

  • Widiarto Program Pasca Sarjana Fakultas Teknologi Informasi, Universitas Budi Luhur Jakarta, Indonesia
  • Denni Kurniawan Program Pasca Sarjana Fakultas Teknologi Informasi, Universitas Budi Luhur Jakarta, Indonesia

DOI:

https://doi.org/10.59188/eduvest.v4i4.1178

Keywords:

Forecasting, Divorce, Single Moving Average, Winter's Exponential Smoothing

Abstract

Based on data from the Central Bureau of Statistics, the divorce rate in Indonesia shows a tendency to increase from year to year. Similar conditions were experienced by Cibinong district. The forecasting method that will be used in this study is the Single Moving Average and Winter's Exponential Smoothing. The results of forecasting the number of lawsuits in 2023 from July to December with movements with two obtained forecasts in July were 602, August 283, MAD value = 67.29, MSE value = 8.722, MAPE = 11.61, RMSE = 1.46, Accuracy value of 88.39%. Movements with four forecasting periods in July were 620, August 448, September 301, October 141. MAD value = 99.33, MSE value = 14,722, MAPE = 16.59, RMSE = 1.90, Accuracy value of 83.41%. Forecasting with the Winters Exponential Smoothing Method with Alpha: 0.1, Beta: 0.3 and Gamma: 0.5, the forecast results obtained in July were 504.10026, August 491.61306, September 663.18788, October 745.41004, November 732.42766 and December 732.10904. MAE value is 171.65116, MSE value is 686.63361, MAD value is 38.74, MSE value is 2.797 MAPE value is 6.0 and RMSE value is 0.83 and accuracy value is 94.00%. Based on the calculation results above, it is concluded that forecasting the number of divorce filings at  Cibinong Religious Court from January 2018 to December 2023 with the Winter Exponential Smoothing method has MAD, MSE, MAPE, RMSE values smaller than values in the Single Moving Average method. Winter Exponential Smoothing method is more appropriate with an accuracy value of 94.00%.

References

G. Eason, B. Noble, and I.N. Sneddon, “On certain integrals of Lipschitz-Hankel type involving products of Bessel functions,” Phil. Trans. Roy. Soc. London, vol. A247, pp. 529-551, April 1955. (references)

Achmad Rifki Rusady, H. R. (2020). Sistem Prediksi Penjualan Barang Bekas Fabrikasi Di CV. Indro Jaya Dengan Metode Single Moving Average. 7(2), 9–19.

Adrianto, R., & Jyoti, M. D. (2021). Analsis Peralaman Penjualan Tepung Tapioka Di Cv. Xyz Lampung. Majalah TEGI, 12(2), 40.

Alfian Nur Rois Choirun, R. H. (2022). Prediksi Penjualan Barang Menggunakan Algoritma Moving Average Pada Toko Ars Frozenfood. 1, 313–319.

Alif, Aji Primajaya, A. S. (2020). Penerapan Algoritma Regresi Linear Berganda Pada Estimasi Penjualan Mobil Astra Isuzu Implementation of Double Winters Exponential Smoothing Algorithm On Sales Estimation of Astra Isuzu Car. 19(4), 364–374.

Ardiana, D. P. Y., & Loekito, L. H. (2018). Sistem Informasi Peramalan Persediaan Barang Menggunakan Metode Single moving average . Jurnal Teknologi Informasi Dan Komputer, 4(1), 71–79. https://doi.org/10.36002/jutik.v4i1.397

Ayuni, G. N., & Fitrianah, D. (2019). Penerapan metode Regresi Linear untuk prediksi penjualan properti pada PT XYZ. Jurnal Telematika, 14(2), 79–86. https://journal.ithb.ac.id/telematika/article/view/321

Badan Pusat Statistik, B. P. (2020). Statistik Hotel Dan Akomodasi Lainnya Di Indonesia.

Chaerunnisa, N., & Momon, A. (2021). Perbandingan Metode Single Exponential Smoothing Dan Moving Average Pada Peralaman Penjualan Produk Minyak Goreng Di Pt Tunas Baru Lampung. Jurnal Rekayasa Sistem Industri, 6(2), 101–106.

Dewa Putu Yudhi Ardiana. (n.d.). Sistem Informasi Peramalan Persediaan Barang Menggunakan Metode Single moving average . 71–79.

Dinda Pratiwi, Havid Syafwan, I. R. H. (2020). Analisis Prediksi Penjualan Ikan Lele Pada UD. Ulong Menggunakan Metode Single Moving Average. 7(2), 9–19.

Dita Meliana, Suharto, P. E. S. (2020). Analisis Peralaman Penjualan Air Minum Dalam Kemasan 240 ml Pada PT. Trijaya Tirta Darma (Great) Dengan Metode Single Moving Average Dan Exponential Smoothing. Industrika: Jurnal Ilmiah Teknik Industri, 4(2).

Enda Esyudha Pratama. (2021). Analisis Kecenderungan Informasi Terkait Covid-10 Berdasarkan Big Data Sosial Media dengan Menggunakan Metode Data Mining. Jurnal Informatika Polinema, 7(2), 1–6.

Fitriani, M. (2022). Implementasi Association Rule Dengan Algoritma Apriori Pada Data Peminjaman Buku UPT Perpustakaan Universitas Lampung Menggunakan Metodologi CRISP-DM. Jurnal Informatika Dan Teknik Elektro Terapan, 10(1), 41–49.

Hasanah, M. A. (2021). Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir. Journal of Applied Informatics and Computing, 5(2), 103–108.

Hayami, R. S. (2021). Penerapan Metode Single Exponential Smoothing Pada Prediksi Penjualan Bed Sheet. Jurnal CoSciTech (Computer Science and Information Technology), 2(1), 32–39.

Hudaningsih. (2020). Perbandingan Peralaman Penjualan Produk Aknil PT. Sunthi Sepuri Menggunakan Metode Exponential Smoothing dan Single Moving Average. Jurnal Informatika, Teknologi Dan Sains, 2(1), 15–22.

Khamaludin, K. (2019). Peralaman Penjualan Hijab Sxproject Menggunakan Metode Moving Average Dan Exponential Smoothing. Unistek, 6(2), 13–16.

Khanifatus Sa’diyah, N. (2021). Implementasi Peralaman Penjualan Ikan Laut Untuk Optimasi Persediaan Bahan Baku (Studi Kasus di UD Harum Bungah Gresik). 6(2), 59–63.

Kurniadi, W. (2018). Pendukung Keputusan Dalam Peralaman Penjualan Ayam Broiler Dengan Metode Trend Moment Dan Simple Moving Average Pada CV. Merdeka Adi Perkasa. Jurnal Media Informatika Budidarma, 2(3), 76–90.

Laisouw, R., & Hamka, H. (2013). Peralaman Penjualan roti kenari arjuns bakery di Kota Ternate Provinsi Maluku Utara. Agrikan: Jurnal Agribisnis Perikanan, 6(2), 28.

Nadya Viranika, William Ramdhan, E. R. (2021). Peramalan Permintaan Minyak Dengan Metode Single Moving Average Pada PT. Alam Jaya Wirasentosa. 27(15), 191–194.

Nur Nafi’iyah, & Rakhmawati, E. (2021). Analisis Regresi Linear Dan Moving Average Dalam Memprediksi Data Penjualan Supermarket. Jurnal Teknologi Informasi Dan Komunikasi, 12(1), 44–50. https://doi.org/10.51903/jtikp.v12i1.230

Pradibta, H., & Al Saffa, A. U. N. (2016). Pengembangan Sistem Informasi Penjualan Dan Peramalan Jual Beli Menggunakan Metode Single moving average (Studi Kasus Toko Emas Maju Sari Kota Malang). Jurnal Informatika Polinema, 2(3), 138. https://doi.org/10.33795/jip.v2i3.72

Prastyo, H. A., & Wahyuningrum, S. E. (2021). Memprediksi Dan Menganalisa Penjualan PT. Mitra Asia Synergy Dengan Metode Regresi Linear. Proxies : Jurnal Informatika, 3(1), 10–19. https://doi.org/10.24167/proxies.v3i1.3623

Rasmila, R., & Amalia, R. (2019). Sistem Informasi Penentuan Persiapan Stok Obat Menggunakan Single moving average . Sistemasi, 8(3), 465. https://doi.org/10.32520/stmsi.v8i3.547

Riyanto, G. (2017). Sistem Prediksi Menggunakan Metode Weight Moving Average Untuk Penentuan Jumlah Order Barang. Jurnal ICT : Information Communication & Technology, 16(2), 37–42.

Sukriadi, E. H. (2021). Pengelolaan Linen Kamar di Internal Hotel Amaris Setiabudhi Bandung. Tourism Scientific Journal, 6(2), 298–313.

Supardi, R. (2020). Penerapan Metode Regresi Linear Dalam Memprediksi Data Penjualan Barang Di Toko Bangunan Vita Viya. Journal of Technopreneurship and Information System (JTIS), 3(1), 11–18. https://doi.org/10.36085/jtis.v3i1.629

Susandi, D., & Nafis, F. (2021). Sistem Peralaman Penjualan Paving Block Menggunakan Metode Single Moving Average. Sistem Informasi |, 8(2), 75–81.

Tenti Pristiani, M. O. (2021). Aplikasi Forecasting Penjualan Kerajinan Batu Menggunakan Metode Winters Exponential Smoothing (Studi Kasus : Cv. Bukit Mulia). JATI (Jurnal Mahasiswa Teknik Informatika), 5(1), 372–379.

Yogo Suwarno, R. L. (2018). Perancangan Hotel Bintang Tiga dengan Konsep Hospitality di Jakarta Selatan. Jurnal Desain, 5(01), 53.

Downloads

Published

2024-04-25