Implementation of K-Nearest Neighbor (KNN) and Logistic Regression Algorithms in Sentiment Analysis Evermos App Reviews
DOI:
https://doi.org/10.59188/eduvest.v4i5.1134Keywords:
Sentiment Analysis, Evermos, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Logistic RegressionAbstract
The Evermos application is one of the e-commerce applications for resellers and dropshippers in Indonesia. To find out the quality of the application requires an assessment from application users. One method that can be used is sentiment analysis. Sentiment analysis is one of the text mining techniques that can help in processing a judgment, complaint, perception or response to a particular object. In this study, the sentiment analysis carried out was the analysis of Evermos application review text on the Google Play Store accompanied by emoji conversion by comparing the K-Nearest Neighbor (KNN) model and Logistic Regression. The comparison of these two classification models was done to get the best accuracy in the sentiment analysis. The results of the two test models that have been carried out, the Logistic Regression model is a classification model that has the best accuracy results with a value of 98.1% in test data and 82.7% in training data.
References
Azzahra, S. A., & Wibowo, A. (2020). Analisis Sentimen Multi-Aspek Berbasis Konversi Ikon Emosi dengan Algoritme Naïve Bayes untuk Ulasan Wisata Kuliner Pada Web Tripadvisor. Jurnal Teknologi Informasi Dan Ilmu Komputer, 7(4), 737. https://doi.org/10.25126/jtiik.2020731907
Budianita, E., Cynthia, E. P., Pranata, A., & Abimanyu, D. (2022). Pendekatan berbasis Machine Learning dan Leksikal Pada Analisis Sentimen. Seminar Nasional Teknologi Informasi, Komunikasi Dan Industri (SNTIKI), 99–104.
Dirgantari, P. D., Hidayat, Y. M., Mahphoth, M. H., & Nugraheni, R. (2020). Level of use and satisfaction of e-commerce customers in covid-19 pandemic period: An information system success model (issm) approach. Indonesian Journal of Science and Technology, 5(2), 261–270. https://doi.org/10.17509/ijost.v5i2.24617
Farhan, M. Z. (2023). ANALISIS SENTIMEN LAYANAN SHOPEEFOOD PADA TWITTER DENGAN METODE K-NEAREST NEIGHBOR , SUPPORT VECTOR MACHINE , DAN. Jurnal Ilmiah Informatika, 7(2), 95–106.
Hartmann, J., Heitmann, M., Siebert, C., & Schamp, C. (2022). More than a Feeling: Accuracy and Application of Sentiment Analysis. International Journal of Research in Marketing, 40, 75–87. https://doi.org/10.1016/j.ijresmar.2022.05.005
Lestari, A. R. T., Perdana, R. S., & Fauzi, M. A. (2017). Analisis Sentimen Tentang Opini Pilkada DKI 2017 Pada Dokumen Twitter Berbahasa Indonesia Menggunakan Naïve Bayes dan Pembobotan Emoji. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(12), 1718–1724.
Novantika, A., & Sugiman. (2022). Analisis Sentimen Ulasan Pengguna Aplikasi Video Conference Google Meet menggunakan Metode SVM dan Logistic Regression. PRISMA, Prosiding Seminar Nasional Matematika, 5, 808–813.
Setiayana, T. (2021). Analisis Sentimen pada review aplikasi kesehatan HALODOC.
Thomas, S., Yuliana, & Noviyanti. P. (2021). Study Analisis Metode Analisis Sentimen pada YouTube. Journal of Information Technology, 1(1), 1–7. https://doi.org/10.46229/jifotech.v1i1.201
Wicaksono, A., Anita, A., & Padilah, T. N. (2021). Uji Performa Teknik Klasifikasi untuk Memprediksi Customer Churn. Bianglala Informatika, 9(1), 37–45. https://doi.org/10.31294/bi.v9i1.9992
Zou, H., & Xiang, K. (2022). Sentiment Classification Method Based on Blending of Emoticons and Short Texts. Entropy, 24(3). https://doi.org/10.3390/e24030398
Published
Issue
Section
License
Copyright (c) 2024 Uswatun Hasana, Lulu Chaerani Munggaran
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.