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ABSTRACT 

Air pollution remains a significant public health challenge in Indonesia, driven by rapid industrialization and 

urbanization. Key pollutants such as NO₂ and SO₂ are strongly linked to respiratory conditions, yet 

comprehensive national evidence on their age-specific impacts remains limited. This study aims to examine the 

causal effects of NO₂ and SO₂ exposure on the incidence of acute respiratory infections (ARI), pneumonia, and 

asthma in Indonesia, with a particular focus on differences across age groups. This study employs a quasi-

experimental design using district-level pollution data and individual health data from Riskesdas 2018. 

Analysis was conducted via multiple linear regression, coefficient stability testing, and IPW to estimate robust 

causal associations. Age-stratified analysis was performed across five groups: 0–4, 5–17, 18–49, 50–74, and 

75+ years. Results show that NO₂ exhibits a strong positive association with ARI incidence, particularly among 

children aged 0–4 and 5–17 years, and is linked to asthma in adults aged 18–49. SO₂ shows significant positive 

effects on ARI among older adults (50–74 years) and on asthma in those aged 75 and above. However, 

unexpected negative or non-significant relationships were found between NO₂ and pneumonia/asthma, and 

between SO₂ and certain outcomes, likely reflecting data constraints and unobserved confounders. In 

conclusion, this study reveals age-specific pollutant–health relationships and underscores the need for targeted 

air quality interventions. Recommendations include strengthening monitoring systems, implementing pollutant-

specific warnings, and integrating environmental–health data to support evidence-based policies and protect 

vulnerable groups. 
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INTRODUCTION 

Air pollution remains one of the most pervasive and costly externalities in modern 

economies. Beyond ecological degradation, it threatens human capital formation—reducing 

health, productivity, and cognitive performance (Chang et al., 2019; Fu et al., 2021; Zivin & 

Neidell, 2012). Airborne pollutants such as nitrogen dioxide (NO₂) and sulphur dioxide (SO₂) 

present a critical public health concern, given the sensitivity of these pollutants to respiratory 

illnesses such as acute respiratory infections (ARIs), pneumonia, and asthma, and the potential 

of these substances to impose both immediate health impacts and long-term socioeconomic 

burdens. However, in Indonesia—a country marked by vast environmental and demographic 

diversity—nationally representative, pollutant-specific evidence remains limited. 

While prior studies have examined Indonesia’s haze events Jayachandran, (2009), 

elevated PM₂.₅ mortality Siregar et al., (2024), and lung function decline (Kim et al., 2017), 

many of these studies often rely on aggregate exposure proxies (e.g., haze, aerosol indices) or 

use generalized or gravest health outcomes like self-rated health or all-cause mortality. City-

level studies (Andriati et al., 2021; Anurogo et al., 2023; Arsyad & Priyana, 2023) have begun 

to address pollutant–health relationships but often lack individual- and/or district-level 

controls, rely solely on diagnosed cases, or ignore subgroup vulnerability. Moreover, these 
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studies predominantly concentrate on urban centers such as Bogor, Tangerang, and 

municipalities within Jakarta—despite air pollution being a widespread concern across 

Indonesia. 

To understand the broader public health burden of air pollution in Indonesia, it is 

essential to move beyond urban-focused analyses and examine exposure risks at a national 

scale using disaggregated, representative data. According to USAID (2018), public perceptions 

of air pollution appear relatively consistent across demographic and regional groups. However, 

only 17% of respondents ranked air pollution as their top concern, and within this subset, 64% 

identified health impacts—particularly respiratory diseases—as the main reason. These 

findings underscore the need to approach air pollution as a national environmental and health 

issue. 

Environmental data further reinforce this urgency. Ground-based pollutant 

measurements show that approximately 30% of Indonesian districts exceed 10 µg/m³ of NO₂ 

or SO₂. Moreover, satellite-based PM₂.₅ data (IHME) indicate that all districts exceed the 5 

µg/m³ threshold. However, existing studies rarely disaggregate pollutant effects across 

Indonesia or isolate the impacts of NO₂ and SO₂—pollutants commonly emitted by the energy 

and transport sectors. Few analyses assess these effects using individual-level, nationally 

representative data, and even fewer investigate age-specific vulnerabilities, despite well-

established differences in physiological susceptibility between children, adults, and the elderly. 

Consequently, this study aims to fill these knowledge gaps by examining how NO₂ and 

SO₂ exposure affects the incidence of ARI, pneumonia, and asthma in Indonesia and how these 

effects differ by age. Using the 2018 Riskesdas survey—a nationally representative health 

dataset linked with district-level pollution data—we estimate pollutant–disease effects for both 

all and diagnosed cases across five age groups (0–4, 5–17, 18–49, 50–74, and 75+). We apply 

a linear regression framework alongside coefficient stability testing and inverse probability 

weighting to identify robust causal associations while addressing potential bias due to sample 

imbalance and unobserved confounding. 

This study contributes to the literature by providing new causal evidence that NO₂ and 

SO₂ are significantly associated with respiratory illness risk in Indonesia, with varying effect 

sizes across pollutants, disease types, and age groups. This study revealed strong and consistent 

effects of NO₂ on ARIs, pneumonia, and asthma among children and robust associations of 

SO₂ with ARIs and asthma in older adults. By applying coefficient stability testing and inverse 

probability weighting, this study accounts for potential attrition and unmeasured confounders, 

although anomalies—such as NO₂'s negative links to asthma and pneumonia and SO₂'s negative 

associations with respiratory outcomes—highlight residual bias from measurement error and 

omitted variable bias. This study offers three policy recommendations: (1) strengthening 

pollutant-specific alert systems with WHO threshold triggers and public accessibility; (2) 

expanding monitoring infrastructure with subdistrict-level automated devices; and (3) 

integrating health records into a national big data platform. These results support more 

granular, life-course-sensitive environmental health policies and lay the groundwork for future 

cost-of-illness research and targeted pollution control in Indonesia’s development agenda. 
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METHOD 

This study adopted a quantitative research design to investigate the associations between 

NO2 and SO2 pollution and respiratory disease incidence in Indonesia. The research draws upon 

two primary data sources: pollutant exposure datasets and individual-level health survey data. 

This study covers approximately 400 Indonesian districts and municipalities. 

 

The pollution exposure data for NO2 and SO2 come from ground-level measurements 

from the Ministry of Environment and Forestry (MoEF) (Direktorat Jenderal Pengendalian 

Pencemaran dan Kerusakan Lingkungan Kementerian Lingkungan Hidup dan Kehutanan RI, 

2018) and satellite-based estimates from the MERRA-2 model (Global Modeling and 

Assimilation Office (GMAO), 2015a). Additional environmental covariates include PM2.5 data 

from the Institute for Health Metrics and Evaluation (IHME) and meteorological variables 

(temperature, rainfall, humidity) sourced from NASA's Global Modeling and Assimilation 

Office (GMAO) (Global Burden of Disease Collaborative Network, 2021; Global Modeling 

and Assimilation Office (GMAO), 2015b). 

The health data are derived from the 2018 Basic Health Research (Riskesdas), conducted 

by the Indonesian Ministry of Health (Kementerian Kesehatan RI, 2018). The survey uses a 

stratified, two-stage sampling design with probability proportional to size (PPS), which targets 

households across all census blocks. The final sample includes all respondents interviewed in 

the 2018 Riskesdas round. 

 

Table 1. Definitions of the Variables 

Categories Variables 

Pollution NO2 

SO2 

Respiratory Diseases ARI: the presence of ≥2 of the following symptoms—

fever, cough (<2 weeks), runny nose, sore throat—or a 

self-reported formal diagnosis within the past month (0 

= unaffected, 1 = affected) 

Pneumonia: report of diagnosis or ≥2 symptoms in past 

12 months (≥5 years: high fever, productive cough, 

dyspnea; <5 years: symptom combinations including 

respiratory distress signs—rapid breathing, nasal 

flaring, or chest wall indrawing) (0 = unaffected, 1 = 

affected) 

Asthma: report of diagnosis and symptom recurrence in 

past 12 months. Newly diagnosed if diagnosis age 

equals or differs by one year from current age. (0 = 

unaffected, 1 = affected) 

Demographic and Socioeconomic 

Controls 

Gender (0: male, 1: female) 

Marital status (0: Never married, 1: Married, 2: 

Divorced, 3: Widowed) 

Education (0: Never attended school, 1: Incomplete 

primary school, 2: Completed primary school, 3: 

Completed junior high school, 4: Completed senior 

high school, 5: Completed diploma level education, 6: 

Completed university degree) 

Age, age2 

Urban‒rural residence (0: urban areas, 1: rural areas) 
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Family-level exposure Presence of other sick members (0: absence, 1: present) 

Behavioral controls Active smoking (0: never smoked, 1: former smoker 

who quit within the last month, 2: currently an 

occasional smoker, 3: former daily smoker now 

smoking occasionally, 4: former occasional smoker 

now smoking daily, 5: currently a daily smoker) 

Passive smoking 

a. DPS (Daily Passive Smoker) (1: exposed daily 

to second-hand smoke) 

b. OPS (Occasional Passive Smoker) (1: exposed 

occasionally) 

Open waste burning (0: otherwise, 1: burning) 

District-level variables Meteorological conditions (temperature, rainfall, 

humidity) 

Copollutants (e.g., NO2 or SO2, and PM2.5) 

Seasonal effects 

Presence of steam-fired coal power plants (PLTU) (0: 

absence, 1: present) 

Healthcare facilities (number of doctors, number of 

hospitals, number of polindes (Poliklinik Desa), 

number of puskesmas and its line) 

Source: Processed from Riskesdas 2018 and MoEF environmental data 

 

Ordinary least squares 

To examine the impact of air pollution on respiratory illness, this study begins with a set 

of ordinary least squares (OLS) regressions. The baseline model estimates individual 

respiratory outcomes—ARI, pneumonia, and asthma—as a function of NO2 and SO2 levels 

measured at the district level. While this linear framework is aligned with established practices 

in environmental health economics, it is prone to omitted variable bias (OVB) if confounders 

such as demographic, behavioral, or environmental factors are not adequately controlled. 

To mitigate OVB, the models incorporate extensive individual-level covariates, 

including age, education, marital status, smoking behavior, and household health exposure. 

These are complemented by district-level controls such as meteorological conditions, 

copollutants, and health infrastructure indicators. This dual-level control structure aims to close 

backdoor paths from pollution to health outcomes. Nonetheless, several estimation challenges 

remain: unmeasured confounders, classical measurement error, and behavioral adaptations that 

obscure true exposure‒response relationships. 

Equation 1. The fully controlled baseline model 

 

𝑌𝑖𝑑  =  𝛼 + 𝛽1̂ ∙ 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑑  +  𝑋𝑖𝑑
′ 𝛾 +  𝑍𝑑

′ 𝛿 + 𝜖𝑖𝑑  

where: 

1. 𝑌𝑖𝑑 denotes an indicator for respiratory illness (ARI, pneumonia, asthma) 

for individual i in district d 

2. where 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑑 is the main exposure variable—either NO2 or SO2 

concentrations at the district level—using measurements from MoEF or 

MERRA-2 satellite data. 
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3. 𝑋𝑖𝑑
′  is a vector of individual-level covariates, including demographic and 

socioeconomic controls, family-level exposure, and behavioral controls 

4. 𝑍𝑑
′  is a vector of district-level variables, including meteorological 

conditions, copollutants, seasonal effects, the presence of steam-fired coal 

power plants (PLTUs), and healthcare facilities. 

5. 𝜖𝑖𝑑 is the individual-level error term 

All regressions are estimated at the individual level. Furthermore, the fully controlled 

OLS model serves as a baseline for comparison with more robust specifications. 

H₀ (null hypothesis): 

There is no significant association between 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑌. 

H₁ (alternative hypothesis): 

There is a significant association between 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 and 𝑌. 

Despite the use of comprehensive controls, OLS estimates are still vulnerable to 

attenuation and selection biases. Pollution data coverage is incomplete and is absent in 

approximately 18% of districts—often those with lower industrial activity. This non-

randomness may bias the results by overrepresenting high-pollution areas. To address this, 

inverse probability weighting is applied to reweight the sample on the basis of predicted 

pollution data availability, thereby correcting for potential attrition bias. 

Finally, to assess heterogeneous effects and improve causal interpretation, the analysis is 

stratified by age group. This acknowledges the biological and epidemiological differences in 

vulnerability to pollution. In contrast to integrated cost-of-illness models, this study focuses 

strictly on estimating pollutant-specific marginal health effects. While rooted in the dose‒

response function literature, it stops short of full economic valuation—serving instead as a 

foundational step toward a more comprehensive environmental health assessment for 

Indonesia. 

 

Robustness models 

To strengthen the validity of the OLS estimates, we apply two complementary robustness 

strategies: the coefficient stability test and inverse probability weighting. The CST, which is 

based on the Oster, (2019) framework, assesses how much selection of unobserved variables 

would be required to nullify the observed treatment effect. By comparing changes in 

coefficients and R2 across nested models, we estimate a δ parameter indicating the strength of 

selection needed on unobservable relative to observables. A large δ or a treatment effect that 

remains materially different from zero under δ = 1 is interpreted as evidence of robustness 

against omitted variable bias. 

Equation 2. The CST model 

𝑌𝑖𝑑  =  𝛼 + 𝛽1
∗ ∙ 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑑  +  𝑋𝑖𝑑

′ 𝛾 +  𝑍𝑑
′ 𝛿 +  𝜖𝑖𝑑 

To address potential selection bias caused by the nonrandom availability of pollution 

data—especially from ground-based monitors—we use IPW. We first estimate a logit model 

predicting the likelihood of a district being observed (i.e., “polluted”) on the basis of industrial 

characteristics. The inverse of the predicted probability is then used to weight observations in 

the regression model. This adjustment rebalances the estimation sample to resemble the full 

population more closely, thus correcting for attrition and enhancing external validity. 
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Equation 3. The IPW model 

𝑌𝑖𝑑  =  𝛼 + 𝛽 ∙ 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑑  +  𝑋𝑖𝑑
′ 𝛾 +  𝑍𝑑

′ 𝛿 +  𝜖𝑖𝑑, 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝑏𝑦 
1

𝑃𝑑̂

  

 

Heterogeneity Model 

We also examined heterogeneity in the pollution‒health relationship by conducting age-

based subgroup analyses. Given that susceptibility to pollution varies across the life course, we 

divided the sample into five biologically relevant age groups: 0–4, 5–17, 18–49, 50–74, and 

75+. Fully controlled models are estimated separately for each group, allowing us to identify 

population-specific vulnerabilities and avoid misinterpretation from pooled estimates. This 

stratified design provides clearer causal interpretations and more targeted policy insights. 

Equation 4. The Age-Based Subgroup Estimation Model 

𝑌𝑖𝑑
(𝑔)  =  𝛼 +  𝛽(𝑔) ∙ 𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛𝑑  +  𝑋𝑖𝑑

′ 𝛾(𝑔)  +  𝑍𝑑
′ 𝛿(𝑔)  +  𝜖𝑖𝑑

(𝑔)  

Each regression is conducted within subgroup 𝑔. 

These robustness and heterogeneity checks enhance the credibility of the main findings. 

The CST addresses concerns about unobserved confounding, the IPW corrects for attrition bias 

due to missing pollution data, and the age-stratified analyses reveal life-course variation in 

pollution sensitivity. Together, these approaches ensure that the estimated associations between 

air pollution and respiratory health outcomes are not only statistically robust but also 

substantively meaningful for policymaking. 

 

RESULT AND DISCUSSION 

Understanding the distribution and characteristics of air pollution is essential given its 

implications for human capital and long-term economic growth. This study examines nitrogen 

dioxide (NO2) and sulphur dioxide (SO2) levels across approximately 400 Indonesian districts 

via 2018 data from the Ministry of Environment and Forestry (MoEF). NO2 concentrations 

range from 1.31 to 37.91 µg/m3, with 29.2% of districts exceeding the WHO’s annual guideline 

(10 µg/m3). SO2 levels vary between 3.12 and 25.92 µg/m3, and 26.7% of districts exceed the 

Canadian 2025 guideline (10.5 µg/m3). MERRA-2 satellite data for SO2 range from 0.032--

25.03 µg/m3; however, only 3.9% of the data exceed the Canadian standard. As Figure 1 

illustrates, ground-based MoEF readings often record higher values than satellite-based 

MERRA-2 readings do. 

 
Figure 1. Scatter plot of local SO2 ground-based and satellite-based measurements, 2018 
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Source: Author’s computation 

The discrepancy arises from methodological differences in data construction. The MoEF 

dataset represents ground-based measurements, combining limited real-time monitoring with 

passive samplers—typically one or two points—each designed to reflect four distinct 

environments: industrial areas, residential zones, transportation corridors, and office districts. 

These measurements are aggregated on a biannual basis. 

In contrast, the SO2 data from MERRA-2 represent satellite-based estimates with broader 

spatial coverage. However, such estimates are derived at a coarse spatial resolution (~50 × 

70 km) and reflect pollutant concentrations from higher atmospheric layers. The accuracy of 

these methods may be compromised by cloud cover and atmospheric interference. 

As a result, ground-based data often record higher pollutant concentrations than satellite-

derived estimates do. Nonetheless, both sources remain susceptible to measurement error, 

potentially introducing classical measurement error that may attenuate estimated effects or bias 

results—particularly when the misalignment between measured and true exposure correlates 

with disease incidence. 

On the health side, Table 2 presents prevalence estimates from the 2018 Riskesdas 

survey. ARIs affect 32.35% of the population (85.3 million), but only 4.37% report a diagnosis. 

Pneumonia affects 14.5% (symptomatic) and 2.01% (diagnosed) of patients. Asthma is least 

prevalent (1.45% symptomatic, 0.28% diagnosed), suggesting underdiagnosis or access 

barriers. 

Table 2. Cases of ARI, pneumonia, and asthma in Indonesia, 2018 

Types of 

Illnesses 

Prevalence Rate 

(All Cases) 

Total Population 

(All Cases) 

Prevalence Rate 

(Self-reported 

Diagnosed 

Cases) 

Total Population 

(Self-reported 

Diagnosed 

Cases) 

ARI 32.35% 85,307,522 4.37% 11,534,516 

Pneumonia 14.50% 38,242,086 2.01% 5,295,961 

Asthma 1.45% 3,830,087 0.28% 745,533 

Source: (Kementerian Kesehatan RI, 2018) 

Note: Author’s own processing 

 

Estimates combine self-reported diagnoses with assessments based on self-reported 

symptoms; the total population of Indonesia is 263,722,841. 

 

Ordinary least squares (OLS) 

Table 3. Comparison of Estimation Results: Baseline, Model with Individual-level 

Controls, and Full Model with Individual-level and District-level Controls in OLS 

Regression 

 ARI Pneumonia Asthma 

 

(1) 

Baseli

ne 

(2) 

+Indiv

idual-

level 

(3) 

Full 

Model 

(1) 

Baseli

ne 

(2) 

+Indiv

idual-

level 

(3) 

Full 

Model 

(1) 

Baseli

ne 

(2) 

+Indiv

idual-

level 

(3) Full 

Model 

NO2 0.0004

55*** 

0.0011

4*** 

0.0008

49*** 

-

0.0003

86*** 

0.0000

491 

-

0.0004

09*** 

0.0000

107 

-

0.0000

437 

-

0.0001

00*** 
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(0.000

0832) 

(0.0000

852) 

(0.000

110) 

(0.000

0623) 

(0.000

0643) 

(0.000

0831) 

(0.0000

219) 

(0.000

0230) 

(0.0000

297) 

Obs. 882255 882255 860823 882255 882255 860823 882255 882255 860823 

F test 29.95 2131.8 1457.6 38.46 1497.0 1065.6 0.238 326.5 219.8 

R-sq. 0.0000

339 

0.0527 0.0544 0.0000

436 

0.0376 0.0404 0.0000

00270 

0.0084

4 

0.0086

1 

SO2 -

0.0000

610 

(0.000

119) 

0.0004

42*** 

(0.0001

18) 

-

0.0009

02*** 

(0.000

133) 

-

0.0002

53** 

(0.000

0895) 

0.0001

22 

(0.000

0889) 

-

0.0006

35*** 

(0.000

100) 

0.0000

547 

(0.0000

315) 

0.0000

376 

(0.000

0318) 

-

0.0000

0953 

(0.0000

358) 

Obs. 882255 882255 860823 882255 882255 860823 882255 882255 860823 

F test 0.261 2124.3 1457.6 7.993 1497.0 1065.6 3.012 326.4 219.8 

R-sq. 0.0000

00296 

0.0525 0.0544 0.0000

0906 

0.0376 0.0404 0.0000

0341 

0.0084

4 

0.0086

1 

SO2 

(MER

RA2) 

0.0004

11*** 

(0.000

0846) 

0.0011

0*** 

(0.0000

859) 

0.0005

92*** 

(0.000

140) 

-

0.0006

19*** 

(0.000

0665) 

-

0.0000

383 

(0.000

0680) 

0.0000

117 

(0.000

114) 

0.0000

283 

(0.0000

226) 

-

0.0000

358 

(0.000

0235) 

-

0.0002

62*** 

(0.0000

405) 

Obs. 101729

0 

101729

0 

860823 101729

0 

101729

0 

860823 101729

0 

101729

0 

860823 

F test 23.61 2518.5 1456.7 86.62 1873.9 1064.4 1.567 372.6 221.1 

R-sq. 0.0000

232 

0.0539 0.0544 0.0000

851 

0.0406 0.0403 0.0000

0154 

0.0083

5 

0.0086

6 

Source: OLS regression results by the author 

Note: Author’s own processing. Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p 

< 0.001.  

 

Each panel compares estimates across three specifications: (1) the baseline model 

without controls, (2) the model with individual-level controls (X), and (3) the fully controlled 

model including both individual-level (X) and district-level (Z) variables. The pollution 

variables include the district-level concentrations of NO2 and SO2, which are measured from 

both ground-based monitoring and satellite-derived data. All regressions are estimated at the 

individual level via OLS, and the results are shown for three health outcomes: acute respiratory 

infections (ARIs), pneumonia, and asthma. The fully controlled OLS model (3) is used as the 

primary baseline for subsequent causal inference tests, including CST and IPW. 

Table 3 presents the evolution of regression estimates across three model specifications: 

(1) a baseline model including only NO2 or SO2 exposures, (2) a model incorporating 

individual-level controls, and (3) a full model that additionally includes district-level 

covariates. This stepwise structure facilitates assessment of how much bias is addressed by 

sequentially adjusting for observed confounders. 

For NO2, the coefficients and explanatory power of the models increase as more 

covariates are introduced. In the case of the ARI, the coefficient increases from 0.000455 at 

the baseline to 0.00114 with individual-level controls and then slightly decreases to 0.000849 

in the full model, whereas R2 improves substantially from 0.00003 to 0.0544. This finding 

indicates that most omitted variable bias stems from individual-level confounding. For 

pneumonia, the coefficient of NO2 shifts from significantly negative to slightly positive before 
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returning to a significant negative estimate. In the asthma models, NO2 is insignificant at first 

but becomes significantly negative (–0.000100) once full controls are applied, confirming 

model refinement through the inclusion of both individual and district-level variables. 

For SO2 (MoEF), the ARI coefficient begins as statistically insignificant, becomes 

significantly positive with individual-level controls, and becomes significantly negative in the 

full specification, coinciding with an increase in R2 to 0.0544. A similar reversal occurs for 

pneumonia, reinforcing the importance of controlling for district-level environmental 

confounders. In contrast, SO2 was not significantly related to asthma across the models. 

Satellite-derived SO2 (MERRA-2) is consistently positively and significantly associated with 

the ARI across specifications, albeit with slight attenuation. For pneumonia, the coefficient 

shifts from significantly negative to statistically null and then to slightly positive. For asthma, 

the relationship switches from a weakly positive to a significantly negative association (–

0.000262), with R2 rising from near zero to 0.00866, indicating improved model fit with full 

adjustment. 

 

Robustness 

Coefficient Stability Test and Inverse Probability Weights 

To assess the robustness of the estimated pollution–health associations, we employed 

both coefficient stability test (CST) and inverse probability weighting (IPW) methods, 

followed by Oster’s (2019) coefficient stability method. In addition to reporting both the non 

and weighted fully controlled OLS estimates, we present bias-adjusted treatment effects (β if δ 

= 1), the corresponding δ values required to nullify the effect (δ for β = 0), and the assumed 

maximum explanatory power (R2 max) of the full model—which is calculated as 1.3 times the 

R2 from the weighted fully controlled model. 

 

Table 4. Comparison of Estimation Results: Method Non-weighting vs. Reweighting via 

IPW 

Variable Non Reweighting 

 Full 

Controlled 

Effect 

Full 

Controlled 

Effect 

 β if𝜹 = 𝟏 𝜹 for𝜷 = 𝟎 R2max 

ARI 

NO2 0.000849*** 

(0.000110) 

0.000618*** 

(0.000166) 

0.000682*** 6.218 0.06864 

R-squared 0.0544 0.0528    

SO2 (Ground-

based) 

-0.000902*** 

(0.000133) 

-0.0000160 

(0.000212) 

-0.000306 -0.0605 0.06864 

R-squared 0.0544 0.0528    

SO2 (Satellite-

based) 

0.000592*** 

(0.000140) 

0.000235 

(0.000161) 

-0.000709 0.400 0.06864 

R-squared 0.0544 0.0528    

Pneumonia 

NO2 -0.000409*** 

(0.0000831) 

-0.000519*** 

(0.000126) 

-0.000463*** 3.136 0.05499 

R-squared 0.0404 0.0423    

SO2 (Ground-

based) 

-0.000635*** 

(0.000100) 

-0.0000623 

(0.000158) 

-0.000247 -0.377 0.05499 
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R-squared 0.0404 0.0423    

SO2 (Satellite-

based) 

0.0000117 

(0.000114) 

-0.000579*** 

(0.000132) 

-0.000736*** 2.358 0.05499 

R-squared 0.0403 0.0423    

Asthma 

NO2 -0.000100*** 

(0.0000297) 

-0.0000315 

(0.0000441) 

-0.0000749 -1.217 0.011297 

R-squared 0.00861 0.00869    

SO2 (Ground-

based) 

-0.00000953 

(0.0000358) 

-0.000124* 

(0.0000633) 

-0.000142* -20.92 0.011297 

R-squared 0.00861 0.00869    

SO2 (Satellite-

based) 

-0.000262*** 

(0.0000405) 

-0.000316*** 

(0.0000465) 

-0.000691*** -40.35 0.011336 

R-squared 0.00866 0.00872    

Source: CST and IPW analysis results by the author 

Note: Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001. Full Controlled Effect:  

 

The coefficient from the regression with all observable controls. “Non” refers to non-

weighted OLS; “IPW” is weighted by inverse probability. R-squared: Indicates the proportion 

of variance in the dependent variable explained by the model. Both non-weighted and IPW-

adjusted models are provided. β if δ = 1: The bias-adjusted treatment effect assumes that the 

selection of unobserved confounders is equal in magnitude to that of observables (δ = 1), 

following (Oster, 2019). R2 max: Maximum R-squared value used to simulate the bias-adjusted 

treatment effect. We assume R2 max = 1.3 × R2 (IPW-adjusted models). δ for β = 0: The 

minimum strength of selection on unobservable (relative to observables) variables required to 

reduce the estimated effect to zero. A large δ implies robustness; a low or negative δ indicates 

sensitivity to omitted variables. 

For the ARI (Table 4.), the estimated NO2 treatment effect decreases to 0.000682 under 

IPW, with a strong δ value of 6.218, indicating high robustness to unobserved confounding. In 

contrast, SO2 (ground-based) attenuates to –0.000306 with a weak δ (–0.0605), and the 

satellite-based SO2 estimate becomes –0.000709 with a low δ of 0.400. The sign reversal and 

attenuation of SO2 effects suggest possible attrition bias due to the underrepresentation of less 

industrialized areas. Additionally, the unusual negative value in the estimated SO2 effect 

indicates a potential bias–measurement error and omitted variable bias–and heterogeneity 

pollution-health effects. 

For pneumonia (Table 4.), the NO2 effect becomes slightly more negative (–0.000463), 

with a strong δ value of 3.136, indicating moderate robustness. The SO2 effect (ground-based) 

weakens to –0.000247 with a non-robust δ (–0.377), whereas satellite-based SO2 has a stronger 

negative effect (–0.000736) with a δ of 2.358. These shifts again highlight the influence of 

attrition bias. Notably, the unusual negative values in the estimated effects of NO2 and SO2 

may indicate potential sources of bias—such as measurement error, omitted variable bias, and 

heterogeneity in pollution–health effects. 

For asthma patients (Table 4.), all the pollutant estimates turn negative. NO2 attenuates 

to –0.0000749 with a non-robust δ (–1.217), whereas SO2 becomes more negative both in 

ground-based (–0.000142, δ = –20.92) and satellite-based (–0.000691, δ = –40.35) models. 

These consistent unusual negative values and extreme δ values suggest strong susceptibility to 
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measurement error, unobserved bias, and heterogeneous pollution–health effects across 

subgroups. 

 

Heterogeneity 

Age-Based Subgroup Estimation 

Having established the sensitivity of pooled models to attrition bias and unobserved 

confounding factors, we proceed to stratify the analysis across five age-defined subgroups to 

uncover heterogeneity in pollution–health responses and assess their robustness via Oster’s 

coefficient stability test and reweighting via IPW. In addition to reporting the weighted fully 

controlled OLS estimates, we present bias-adjusted treatment effects (β if δ = 1), the 

corresponding δ values required to nullify the effect (δ for β = 0), and the assumed maximum 

explanatory power (R2 max) of the full model—which is calculated as 1.3 times the R2 from 

the weighted fully controlled model. 

Across all the patients with ARIs (Table 5. ), NO2 shows strong, positive, and robust 

effects in children (0–4: 0.00321, δ = 3.422; 5–17: 0.00101, δ = 1.829), whereas effects in 

adults aged 50–74 are smaller and not robust. SO2 appears negative and less robust in children 

but becomes positive and robust in adults aged 50–74 across data sources. In individuals 

diagnosed with ARIs, NO2 remains robust in children, becomes negative in older adults, and is 

positive in adults aged 18–49 years. SO2 from MoEF is positive and strong in adolescents (5–

17, δ = 8.154), whereas satellite SO2 is positive and robust across all ages for diagnosed ARIs. 

Unusual negative estimates for NO2 and SO2 suggest possible bias from measurement error 

and omitted variable bias in pollution–health effects. 

Table 5. ARI, Pneumonia, and Asthma—Pollutant Age-Based Subgroup Estimation 

Variable 0-4 5-17 18-49 50-74 75+ 

 Full 

Con

troll

ed 

Effe

ct 

 β 

if𝛿 =
1 

𝛿 

fo

r

𝛽 =
0 

Full 

Con

troll

ed 

Effe

ct 

 β 

if𝛿 =
1 

𝛿 

fo

r

𝛽 =
0 

Full 

Con

troll

ed 

Effe

ct 

 β 

if

𝛿 =
1 

𝛿 

fo

r

𝛽 =
0 

Full 

Contr

olled 

Effect 

 β 

if

𝛿 =
1 

𝛿 

fo

r

𝛽 =
0 

Full 

Contr

olled 

Effec

t 

 β 

if

𝛿 =
1 

𝛿 

fo

r

𝛽 =
0 

ARI 

NO

2 

0.00

338

*** 

(0.0

006

26) 

0.003

21*** 

 

3.

42

2 

 

0.00

168

*** 

(0.0

003

49) 

0.001

01**

* 

 

1.

82

9 

 

0.00

008

95 

(0.0

002

38) 

-

0.00

005

78 

0.

67

1 

-

0.000

501 

(0.000

357) 

0.00

025

0 

0.

72

3 

-

0.001

81 

(0.00

105) 

-

0.00

130 

2.

28

4 

R-

squ

are

d 

0.06

25 

  0.05

48 

  0.03

76 

  0.038

3 

  0.032

5 

  

SO

2 

(Gr

ou

nd-

bas

ed) 

-

0.00

031

5 

(0.0

007

85) 

-

0.001

28 

 

-

0.

36

4 

 

-

0.00

026

6 

(0.0

004

46) 

-

0.001

05 

-

0.

37

8 

0.00

005

75 

(0.0

003

02) 

-

0.00

020

7 

0.

23

3 

0.000

322 

(0.000

456) 

0.00

065

3 

-

1.

13

9 

-

0.001

21 

(0.00

126) 

-

0.00

089

8 

3.

25

0 

R-

squ

0.06

25 

  0.05

48 

  0.03

76 

  0.038

3 

  0.032

5 
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are

d 

SO

2 

(Sa

tell

ite-

bas

ed) 

0.00

232

*** 

(0.0

005

74) 

-

0.000

422**

* 

 

0.

91

5 

 

0.00

141

*** 

(0.0

003

29) 

-

0.001

24**

* 

 

0.

68

6 

 

-

0.00

028

3 

(0.0

002

32) 

-

0.00

183 

-

0.

45

9 

-

0.001

08** 

(0.000

376) 

0.00

012

4** 

0.

94

7 

-

0.002

26 

(0.00

127) 

-

0.00

059

9 

1.

16

1 

R-

squ

are

d 

0.06

27 

  0.05

49 

  0.03

76 

  0.038

3 

  0.032

6 

  

Pneumonia 

NO

2 

-

0.00

010

0 

(0.0

003

10) 

0.000

0579 

0.

69

4 

0.00

071

6** 

(0.0

002

74) 

0.000

919*

* 

41

.0

6 

-

0.00

071

3**

* 

(0.0

001

86) 

-

0.00

081

1**

* 

7.

45

6 

-

0.001

79*** 

(0.000

281) 

-

0.00

146

*** 

2.

62

9 

-

0.004

02**

* 

(0.00

0916) 

-

0.00

371

*** 

3.

28

5 

R-

squ

are

d 

0.01

75 

  0.05

24 

  0.03

78 

  0.041

5 

  0.042

5 

  

SO

2 

(Gr

ou

nd-

bas

ed) 

-

0.00

035

8 

(0.0

003

72) 

-

0.000

496 

-

3.

61

8 

-

0.00

079

6* 

(0.0

003

62) 

-

0.001

31* 

-

1.

93

3 

0.00

034

1 

(0.0

002

23) 

0.00

016

1 

1.

75

9 

0.000

439 

(0.000

352) 

0.00

075

2 

-

1.

70

8 

-

0.001

52 

(0.00

104) 

-

0.00

092

3 

2.

30

3 

R-

squ

are

d 

0.01

75 

  0.05

24 

  0.03

78 

  0.041

5 

  0.042

5 

  

SO

2 

(Sa

tell

ite-

bas

ed) 

-

0.00

074

3* 

(0.0

002

97) 

-

0.001

06* 

2.

94

8 

0.00

016

9 

(0.0

002

86) 

-

0.000

492 

0.

42

0 

-

0.00

053

3** 

(0.0

001

91) 

-

0.00

103

*** 

6.

59

4 

-

0.001

65*** 

(0.000

315) 

-

0.00

031

4**

* 

1.

09

2 

-

0.002

35* 

(0.00

114) 

0.00

130

* 

0.

77

8 

R-

squ

are

d 

0.01

75 

  0.05

24 

  0.03

78 

  0.041

7 

  0.042

6 

  

Asthma 

NO

2 

0.00

009

85 

(0.0

001

70) 

0.000

254 

-

0.

99

7 

-

0.00

003

13 

(0.0

000

733

) 

-

0.000

153 

-

0.

36

4 

0.00

002

58 

(0.0

000

618) 

0.00

000

342 

1.

11

3 

-

0.000

235* 

(0.000

119) 

-

0.00

017

6* 

2.

34

6 

-

0.000

507 

(0.00

0485) 

-

0.00

037

7 

2.

43

1 

R-

squ

0.01

75 

  0.00

947 

  0.00

513 

  0.007

20 

  0.018

4 
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are

d 

SO

2 

(Gr

ou

nd-

bas

ed) 

-

0.00

045

9 

(0.0

002

54) 

-

0.000

408 

5.

22

3 

-

0.00

004

23 

(0.0

001

01) 

-

0.000

0902 

-

1.

03

2 

-

0.00

019

3* 

(0.0

000

951) 

-

0.00

022

0* 

-

21

.4

8 

0.000

0389 

(0.000

162) 

0.00

011

0 

-

0.

62

0 

0.000

466 

(0.00

0438) 

0.00

060

8 

-

4.

36

4 

R-

squ

are

d 

0.01

75 

  0.00

947 

  0.00

513 

  0.007

20 

  0.018

4 

  

SO

2 

(Sa

tell

ite-

bas

ed) 

-

0.00

035

7* 

(0.0

001

40) 

-

0.000

225* 

1.

40

3 

-

0.00

008

27 

(0.0

000

777

) 

-

0.000

366 

-

0.

86

0 

-

0.00

032

3**

* 

(0.0

000

659) 

-

0.00

072

9**

* 

-

11

.3

5 

-

0.000

651**

* 

(0.000

138) 

-

0.00

094

6**

* 

2.

60

5 

-

0.000

216 

(0.00

0568) 

0.00

045

8 

0.

47

7 

R-

squ

are

d 

0.01

74 

  0.00

947 

  0.00

516 

  0.007

32 

  0.018

3 

  

Source: Age-subgroup analysis with IPW and CST by the author 

 

Note: Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001. The fully controlled effect 

refers to the coefficient estimated from the IPW-weighted OLS regression model including the full set 

of observed control variables. The model adjusts for sample imbalance via inverse probability weighting 

(IPW) to mitigate attrition bias across subgroups. R-squared: Indicates the proportion of variance in the 

dependent variable explained by the model. β if δ = 1: The bias-adjusted treatment effect assumes that 

the selection of unobserved confounders is equal in magnitude to that of observables (δ = 1), following 

(Oster, 2019). R2 max: Maximum R-squared value used to simulate the bias-adjusted treatment effect. 

We assume R2 max = 1.3 × R2 (IPW-adjusted models). δ for β = 0: The minimum strength of selection 

on unobservable (relative to observables) variables required to reduce the estimated effect to zero. A 

large δ implies robustness; a low or negative δ indicates sensitivity to omitted variables. 

 

For pneumonia (Table 5.), NO2 effects are positive in children (0–4: 0.0000579, δ = 

0.694; 5–17: 0.000919, δ = 41.06), whereas SO2 is negative in children but becomes positive 

and robust for adults aged 18–74 (MoEF) and for those aged 75+ (satellite). Diagnosed 

pneumonia shows robust NO2 effects only in children aged 0–4 years and robust SO2 effects 

across all age groups (MoEF) and all but the youngest (satellite). For asthma patients (Table 

5.), NO2 is positive in young children and robust in adults aged 18–49 years. SO2 is generally 

negative in children but positive in older adults, with satellite data confirming significance only 

in the 75+ group. In individuals diagnosed with asthma, both NO2 and satellite SO2 effects are 

negative, whereas MoEF SO2 remains positive and robust in adults aged 50–74 years. Again, 

negative estimates of NO2 and SO2 may reflect bias from measurement error, omitted 

confounders, and underlying heterogeneity in exposure‒response relationships. 

Air pollution is a classic negative externality—its costs are underpriced, diffuse, and 

deeply embedded in urban economies. Empirical research has shown that pollutants such as 
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PM2.5, NO2, and SO2 significantly affect economic outcomes, ranging from asset prices and 

corporate valuations to national GDP. In urban housing markets, residents internalize air 

quality, as seen in Mexico City, where a 10% rise in AOD reduces home values by 1.3% and 

raises wages by 2.3% (Goodwin et al., 2021); in Shanghai, a 1 μg/m3 reduction in PM2.5 and 

NO2 raises housing prices by 155.93 and 278.03 yuan/m2, respectively (Zou et al., 2022), 

whereas PM2.5 and SO2 reductions from the Blue-Sky Protection Campaign increased home 

values by up to 6% in Changsha (Feng et al., 2024), underscoring the capitalization of cleaner 

air. Pollution also affects corporate finance and markets: in China, a 1 μg/m3 increase in PM2.5 

leads to a 0.3-point drop in ESG scores for manufacturing firms, especially in polluting 

industries (Zhao et al., 2024); in New York, daily S&P 500 returns fall by nearly 12% on high-

PM2.5 days owing to cognitive strain on traders (Heyes et al., 2016); and NO2 disrupts earnings 

forecasts after site visits in polluted cities, highlighting its role as a behavioral pollutant that 

alters mood, attention, and risk perception (Dong et al., 2021). Finally, air pollution undermines 

labor productivity across physical and cognitive tasks: a 10-ppb rise in ozone reduces 

agricultural output by 5.5% (Zivin & Neidell, 2012), a 10-point API increase cuts daily call 

center output by 0.35% Chang et al., (2019), and a 1 μg/m3 drop in PM2.5 increases firm 

productivity by 0.82%, whereas a 1% national PM2.5 reduction could increase GDP by 0.039% 

(Fu et al., 2021). Collectively, these findings show that pollution control yields not only health 

but also substantial economic gains. 

Air pollution not only leads to productivity losses but also imposes substantial health 

costs, particularly through its effects on respiratory illnesses. Using the IPW model to correct 

for sampling bias, this study revealed that NO2 remains significantly and robustly associated 

with the ARI, indicating a stable causal effect even after adjusting for attrition. These findings 

are in line with the well-documented link between NO2 and ARI, which is consistent with 

localized studies such as (Andriati et al., 2021; Surury et al., 2022), which show that higher 

NO2 concentrations increase the incidence of ARI. However, NO2 appears to have no 

significant effect on asthma and is even negatively associated with pneumonia—findings that 

are unusual and diverge from established biomolecular signaling literature and localized 

evidence from (Anurogo et al., 2023; Arsyad & Priyana, 2023), who reported that rising NO2 

levels increase asthma incidence. 

Similarly, SO2 had no significant effect on the incidence of ARIs or pneumonia on the 

basis of ground-based measurements and had a significantly negative effect on asthma 

incidence. When satellite-based data are used, the effect of SO2 on the incidence of ARIs 

remains insignificant and is significantly negatively associated with pneumonia and asthma. 

These results are uncommon and inconsistent with the known biomolecular mechanisms 

linking SO2 to respiratory outcomes and contrast with findings from (Anurogo et al., 2023; 

Arsyad & Priyana, 2023), who reported positive associations between SO2 concentrations and 

asthma incidence. (Surury et al., 2022), using annual SO2 data in Jakarta, also reported that 

SO2 increased the incidence of ARIs, although the relationship was nonlinear and inconsistent. 

(Lestari & Haryanto, 2022), using now-unavailable monthly SO2 data from Jakarta’s 

environmental agency, reported an atypical and inconsistent correlation between SO2 and ARI 

among children. 

Several factors may explain these inconsistencies. First, the quality of the NO2 and SO2 

concentration data used. Although this study utilized ground-based pollutant data covering 
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82% of Indonesia, the data quality may vary regionally, as it largely relies on passive samplers, 

with only one or two sampling points estimated to represent each of the four distinct sites per 

district—aggregated biannually. This stems from limitations in automatic monitoring 

infrastructure: in 2018, Indonesia had only 13 cities equipped with automatic pollutant 

monitoring, covering just 2.53% of the country. To enhance coverage, the study complemented 

ground-based data with satellite-derived pollution estimates. However, these satellite 

measurements have low spatial resolution and capture pollutants from higher atmospheric 

layers, which are often affected by clouds and atmospheric interference, which may lead to 

measurement error and misrepresentation of true individual-level exposure. 

These data limitations likely contribute to discrepancies with the established literature. 

For example, Liu & Ao, (2021), using hourly ground-based pollutant data from Taiwan, 

reported that a one-unit improvement in the AQI results in NT$2.3 billion (approximately 

US$74 million) savings in annual outpatient respiratory expenditures. Similarly, Sofwan et al., 

(2021) used hourly pollutant data in Malaysia and reported significant positive associations 

between pollutants (including NO2 and SO2) and respiratory illness risk. 

Second, although this study employed coefficient stability testing to assess robustness to 

unobservable variables (assuming equal importance between observed and unobserved 

variables with δ = 1), the adjusted results suggest limited correction and indicate remaining 

bias from unobserved confounders. Omitted variable bias at both the individual and regional 

levels may distort estimations. Community-level prevention and healthcare investment, 

regional air quality control policies, and local allergen levels are key unobserved variables. 

Individual behaviors—such as mask usage, outdoor exposure duration, and occupational 

proximity to pollution sources—also remain unobserved. Owing to these data limitations, 

heterogeneity across Indonesia’s population and geography may have introduced bias in the 

study’s estimates, particularly regarding the NO2 pneumonia and NO2 asthma results and the 

generally negative SO2 findings, which deviate from well-established biomolecular logic. 

Age-stratified analysis confirmed that children (0–4 and 5–17 years) are particularly 

vulnerable, with NO2 significantly increasing the risks of ARI, pneumonia, and asthma, 

supporting the findings of the clinical literature on childhood immune immaturity (Azmi et al., 

2016). Among adults, NO2 increases the ARI from 50–74, whereas SO2 increases the ARI from 

50–74 (across both data sources). For asthma, NO2 is robust in adults 18–49, and SO2 is robust 

in the oldest adults 75+. These results suggest that cumulative exposure, lifestyle, and 

comorbidities heighten adult susceptibility, especially to SO2, echoing prior links to late-life 

asthma Wu et al., (2014), and reinforce the urgency of quantifying pollution’s long-term 

economic burden. 

Health effects from air pollution, particularly SO2, have economic implications. 

Ramakrishnan et al., (2016) reported that SO2 significantly reduces GDP per capita by 0.12 

percentage points per 1% increase in emissions across high-income countries. Combined with 

broader literature on productivity loss (Chang et al., 2019; Fu et al., 2021; Zivin & Neidell, 

2012), housing value decline (Feng et al., 2024; Goodwin et al., 2021), and impaired firm 

valuation Zhao et al., (2024), the findings show that air quality is not just a health issue but also 

a pillar of economic resilience. Pollution control must be prioritized as an investment in human 

capital and long-term prosperity. 
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CONCLUSION 

This study reveals that NO₂ and SO₂ pollutants significantly elevate respiratory disease 

incidence in Indonesia, with NO₂ showing robust positive associations with acute respiratory 

infections (ARIs) among children (0–4 and 5–17 years) and asthma in young adults (18–49 

years), while SO₂ impacts ARIs in middle-aged adults (50–74 years) and asthma in the elderly 

(75+ years), underscoring life-course vulnerabilities. Unexpected negative or non-significant 

links (e.g., NO₂ with pneumonia/asthma) highlight data limitations like sparse spatial/temporal 

pollution coverage and measurement bias. Policy recommendations include pollutant-specific 

WHO-aligned alert systems with public real-time access, subdistrict-level automated 

monitoring, and integrated national health-environmental data platforms. Sensitivity analyses 

via inverse probability weighting also flag PM₂.₅'s role in ARIs/asthma, suggesting future 

research employ granular national/regional data to explore nonlinear/threshold effects, 

economic cost-of-illness valuations, and multi-pollutant interactions for refined pollution 

control strategies. 
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