Eduvest — Journal of Universal Studies

,‘:‘E e'd uve St Volume 6 Number 2, February, 2026
p- ISSN 2775-3735- e-ISSN 2775-3727

The Impact of NO:; and SO: Pollutants on Respiratory Diseases: A Case
Study of Indonesia

Reizka Asadelia Rafmawan
Universitas Indonesia
Email: r.asadeliaa@gmail.com

ABSTRACT

Air pollution remains a significant public health challenge in Indonesia, driven by rapid industrialization and
urbanization. Key pollutants such as NO: and SO: are strongly linked to respiratory conditions, yet
comprehensive national evidence on their age-specific impacts remains limited. This study aims to examine the
causal effects of NO: and SO: exposure on the incidence of acute respiratory infections (ARI), pneumonia, and
asthma in Indonesia, with a particular focus on differences across age groups. This study employs a quasi-
experimental design using district-level pollution data and individual health data from Riskesdas 2018.
Analysis was conducted via multiple linear regression, coefficient stability testing, and IPW to estimate robust
causal associations. Age-stratified analysis was performed across five groups: 0—4, 5—17, 18—49, 50-74, and
75+ years. Results show that NO: exhibits a strong positive association with ARI incidence, particularly among
children aged 0—4 and 5—17 years, and is linked to asthma in adults aged 18—49. SO: shows significant positive
effects on ARI among older adults (50-74 years) and on asthma in those aged 75 and above. However,
unexpected negative or non-significant relationships were found between NO: and pneumonia/asthma, and
between SO: and certain outcomes, likely reflecting data constraints and unobserved confounders. In
conclusion, this study reveals age-specific pollutant—health relationships and underscores the need for targeted
air quality interventions. Recommendations include strengthening monitoring systems, implementing pollutant-
specific warnings, and integrating environmental-health data to support evidence-based policies and protect
vulnerable groups.
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INTRODUCTION

Air pollution remains one of the most pervasive and costly externalities in modern
economies. Beyond ecological degradation, it threatens human capital formation—reducing
health, productivity, and cognitive performance (Chang et al., 2019; Fu et al., 2021; Zivin &
Neidell, 2012). Airborne pollutants such as nitrogen dioxide (NO:) and sulphur dioxide (SO-)
present a critical public health concern, given the sensitivity of these pollutants to respiratory
illnesses such as acute respiratory infections (ARIs), pneumonia, and asthma, and the potential
of these substances to impose both immediate health impacts and long-term socioeconomic
burdens. However, in Indonesia—a country marked by vast environmental and demographic
diversity—nationally representative, pollutant-specific evidence remains limited.

While prior studies have examined Indonesia’s haze events Jayachandran, (2009),
elevated PMz.s mortality Siregar et al., (2024), and lung function decline (Kim et al., 2017),
many of these studies often rely on aggregate exposure proxies (e.g., haze, aerosol indices) or
use generalized or gravest health outcomes like self-rated health or all-cause mortality. City-
level studies (Andriati et al., 2021; Anurogo et al., 2023; Arsyad & Priyana, 2023) have begun
to address pollutant-health relationships but often lack individual- and/or district-level
controls, rely solely on diagnosed cases, or ignore subgroup vulnerability. Moreover, these
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studies predominantly concentrate on urban centers such as Bogor, Tangerang, and
municipalities within Jakarta—despite air pollution being a widespread concern across
Indonesia.

To understand the broader public health burden of air pollution in Indonesia, it is
essential to move beyond urban-focused analyses and examine exposure risks at a national
scale using disaggregated, representative data. According to USAID (2018), public perceptions
of air pollution appear relatively consistent across demographic and regional groups. However,
only 17% of respondents ranked air pollution as their top concern, and within this subset, 64%
identified health impacts—particularly respiratory diseases—as the main reason. These
findings underscore the need to approach air pollution as a national environmental and health
issue.

Environmental data further reinforce this urgency. Ground-based pollutant
measurements show that approximately 30% of Indonesian districts exceed 10 ug/m? of NO2
or SO.. Moreover, satellite-based PM..s data (IHME) indicate that all districts exceed the 5
pg/m* threshold. However, existing studies rarely disaggregate pollutant effects across
Indonesia or isolate the impacts of NO2 and SO>—pollutants commonly emitted by the energy
and transport sectors. Few analyses assess these effects using individual-level, nationally
representative data, and even fewer investigate age-specific vulnerabilities, despite well-
established differences in physiological susceptibility between children, adults, and the elderly.

Consequently, this study aims to fill these knowledge gaps by examining how NO: and
SO: exposure affects the incidence of ARI, pneumonia, and asthma in Indonesia and how these
effects differ by age. Using the 2018 Riskesdas survey—a nationally representative health
dataset linked with district-level pollution data—we estimate pollutant—disease effects for both
all and diagnosed cases across five age groups (0—4, 5-17, 18-49, 50-74, and 75+). We apply
a linear regression framework alongside coefficient stability testing and inverse probability
weighting to identify robust causal associations while addressing potential bias due to sample
imbalance and unobserved confounding.

This study contributes to the literature by providing new causal evidence that NO: and
SO: are significantly associated with respiratory illness risk in Indonesia, with varying effect
sizes across pollutants, disease types, and age groups. This study revealed strong and consistent
effects of NO2 on ARIs, pneumonia, and asthma among children and robust associations of
SO: with ARIs and asthma in older adults. By applying coefficient stability testing and inverse
probability weighting, this study accounts for potential attrition and unmeasured confounders,
although anomalies—such as NO:'s negative links to asthma and pneumonia and SO-'s negative
associations with respiratory outcomes—highlight residual bias from measurement error and
omitted variable bias. This study offers three policy recommendations: (1) strengthening
pollutant-specific alert systems with WHO threshold triggers and public accessibility; (2)
expanding monitoring infrastructure with subdistrict-level automated devices; and (3)
integrating health records into a national big data platform. These results support more
granular, life-course-sensitive environmental health policies and lay the groundwork for future
cost-of-illness research and targeted pollution control in Indonesia’s development agenda.
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METHOD

This study adopted a quantitative research design to investigate the associations between
NO2 and SO» pollution and respiratory disease incidence in Indonesia. The research draws upon
two primary data sources: pollutant exposure datasets and individual-level health survey data.
This study covers approximately 400 Indonesian districts and municipalities.

The pollution exposure data for NO2 and SOz come from ground-level measurements
from the Ministry of Environment and Forestry (MoEF) (Direktorat Jenderal Pengendalian
Pencemaran dan Kerusakan Lingkungan Kementerian Lingkungan Hidup dan Kehutanan RI,
2018) and satellite-based estimates from the MERRA-2 model (Global Modeling and
Assimilation Office (GMAO), 2015a). Additional environmental covariates include PM; 5 data
from the Institute for Health Metrics and Evaluation (IHME) and meteorological variables
(temperature, rainfall, humidity) sourced from NASA's Global Modeling and Assimilation
Office (GMAO) (Global Burden of Disease Collaborative Network, 2021; Global Modeling
and Assimilation Office (GMAO), 2015b).

The health data are derived from the 2018 Basic Health Research (Riskesdas), conducted
by the Indonesian Ministry of Health (Kementerian Kesehatan RI, 2018). The survey uses a
stratified, two-stage sampling design with probability proportional to size (PPS), which targets
households across all census blocks. The final sample includes all respondents interviewed in
the 2018 Riskesdas round.

Table 1. Definitions of the Variables

Categories Variables
Pollution NO;
SO,
Respiratory Diseases ARI: the presence of >2 of the following symptoms—

fever, cough (<2 weeks), runny nose, sore throat—or a
self-reported formal diagnosis within the past month (0
= unaffected, 1 = affected)
Pneumonia: report of diagnosis or >2 symptoms in past
12 months (=5 years: high fever, productive cough,
dyspnea; <5 years: symptom combinations including
respiratory distress signs—rapid breathing, nasal
flaring, or chest wall indrawing) (0 = unaffected, 1 =
affected)
Asthma: report of diagnosis and symptom recurrence in
past 12 months. Newly diagnosed if diagnosis age
equals or differs by one year from current age. (0 =
unaffected, 1 = affected)

Demographic and Socioeconomic  Gender (0: male, 1: female)

Controls Marital status (0: Never married, 1: Married, 2:
Divorced, 3: Widowed)
Education (0: Never attended school, 1: Incomplete
primary school, 2: Completed primary school, 3:
Completed junior high school, 4: Completed senior
high school, 5: Completed diploma level education, 6:
Completed university degree)
Age, age?
Urban-rural residence (0: urban areas, 1: rural areas)
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Family-level exposure Presence of other sick members (0: absence, 1: present)
Behavioral controls Active smoking (0: never smoked, 1: former smoker
who quit within the last month, 2: currently an
occasional smoker, 3: former daily smoker now
smoking occasionally, 4: former occasional smoker
now smoking daily, 5: currently a daily smoker)
Passive smoking
a. DPS (Daily Passive Smoker) (1: exposed daily
to second-hand smoke)
b. OPS (Occasional Passive Smoker) (1: exposed

occasionally)
Open waste burning (0: otherwise, 1: burning)
District-level variables Meteorological conditions (temperature, rainfall,
humidity)

Copollutants (e.g., NO; or SO, and PM> 5)
Seasonal effects
Presence of steam-fired coal power plants (PLTU) (0:
absence, 1: present)
Healthcare facilities (number of doctors, number of
hospitals, number of polindes (Poliklinik Desa),
number of puskesmas and its line)

Source: Processed from Riskesdas 2018 and MoEF environmental data

Ordinary least squares

To examine the impact of air pollution on respiratory illness, this study begins with a set
of ordinary least squares (OLS) regressions. The baseline model estimates individual
respiratory outcomes—ARI, pneumonia, and asthma—as a function of NO; and SO levels
measured at the district level. While this linear framework is aligned with established practices
in environmental health economics, it is prone to omitted variable bias (OVB) if confounders
such as demographic, behavioral, or environmental factors are not adequately controlled.

To mitigate OVB, the models incorporate extensive individual-level covariates,
including age, education, marital status, smoking behavior, and household health exposure.
These are complemented by district-level controls such as meteorological conditions,
copollutants, and health infrastructure indicators. This dual-level control structure aims to close
backdoor paths from pollution to health outcomes. Nonetheless, several estimation challenges
remain: unmeasured confounders, classical measurement error, and behavioral adaptations that
obscure true exposure—response relationships.

Equation 1. The fully controlled baseline model

Yiu = a + By - Pollutiong + X!;v + Z46 + €4
where:
1. Y4 denotes an indicator for respiratory illness (ARI, pneumonia, asthma)
for individual 1 in district d
2. where Pollution, is the main exposure variable—either NO> or SO>
concentrations at the district level—using measurements from MoEF or
MERRA-2 satellite data.
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3. Xj, is a vector of individual-level covariates, including demographic and
socioeconomic controls, family-level exposure, and behavioral controls

4, Z/ is a vector of district-level variables, including meteorological
conditions, copollutants, seasonal effects, the presence of steam-fired coal
power plants (PLTUs), and healthcare facilities.

5. €;q 1s the individual-level error term

All regressions are estimated at the individual level. Furthermore, the fully controlled
OLS model serves as a baseline for comparison with more robust specifications.

Ho (null hypothesis):

There is no significant association between Pollution and Y.

H. (alternative hypothesis):

There is a significant association between Pollution and Y.

Despite the use of comprehensive controls, OLS estimates are still vulnerable to
attenuation and selection biases. Pollution data coverage is incomplete and is absent in
approximately 18% of districts—often those with lower industrial activity. This non-
randomness may bias the results by overrepresenting high-pollution areas. To address this,
inverse probability weighting is applied to reweight the sample on the basis of predicted
pollution data availability, thereby correcting for potential attrition bias.

Finally, to assess heterogeneous effects and improve causal interpretation, the analysis is
stratified by age group. This acknowledges the biological and epidemiological differences in
vulnerability to pollution. In contrast to integrated cost-of-illness models, this study focuses
strictly on estimating pollutant-specific marginal health effects. While rooted in the dose—
response function literature, it stops short of full economic valuation—serving instead as a
foundational step toward a more comprehensive environmental health assessment for
Indonesia.

Robustness models

To strengthen the validity of the OLS estimates, we apply two complementary robustness
strategies: the coefficient stability test and inverse probability weighting. The CST, which is
based on the Oster, (2019) framework, assesses how much selection of unobserved variables
would be required to nullify the observed treatment effect. By comparing changes in
coefficients and R? across nested models, we estimate a § parameter indicating the strength of
selection needed on unobservable relative to observables. A large d or a treatment effect that
remains materially different from zero under 6 =1 is interpreted as evidence of robustness
against omitted variable bias.
Equation 2. The CST model

Yia = a + By - Pollutiong + Xizy + Z}6 + €4

To address potential selection bias caused by the nonrandom availability of pollution
data—especially from ground-based monitors—we use [IPW. We first estimate a logit model
predicting the likelihood of a district being observed (i.e., “polluted”) on the basis of industrial
characteristics. The inverse of the predicted probability is then used to weight observations in
the regression model. This adjustment rebalances the estimation sample to resemble the full
population more closely, thus correcting for attrition and enhancing external validity.
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Equation 3. The IPW model

Yia = a + B - Pollutiong + X{z;y + Z;6 + €4, weighted by P;
d

Heterogeneity Model

We also examined heterogeneity in the pollution—health relationship by conducting age-
based subgroup analyses. Given that susceptibility to pollution varies across the life course, we
divided the sample into five biologically relevant age groups: 0—4, 5-17, 1849, 50-74, and
75+. Fully controlled models are estimated separately for each group, allowing us to identify
population-specific vulnerabilities and avoid misinterpretation from pooled estimates. This
stratified design provides clearer causal interpretations and more targeted policy insights.
Equation 4. The Age-Based Subgroup Estimation Model

Vi@ = a + BW - Pollutiony + X};y 9 + Z,69 + €49

Each regression is conducted within subgroup g.

These robustness and heterogeneity checks enhance the credibility of the main findings.
The CST addresses concerns about unobserved confounding, the IPW corrects for attrition bias
due to missing pollution data, and the age-stratified analyses reveal life-course variation in
pollution sensitivity. Together, these approaches ensure that the estimated associations between
air pollution and respiratory health outcomes are not only statistically robust but also
substantively meaningful for policymaking.

RESULT AND DISCUSSION

Understanding the distribution and characteristics of air pollution is essential given its
implications for human capital and long-term economic growth. This study examines nitrogen
dioxide (NO2) and sulphur dioxide (SO.) levels across approximately 400 Indonesian districts
via 2018 data from the Ministry of Environment and Forestry (MoEF). NO> concentrations
range from 1.31 to 37.91 pg/m?, with 29.2% of districts exceeding the WHO’s annual guideline
(10 pg/m?). SO, levels vary between 3.12 and 25.92 pg/m?, and 26.7% of districts exceed the
Canadian 2025 guideline (10.5 png/m*). MERRA-2 satellite data for SO range from 0.032--
25.03 pg/m?; however, only 3.9% of the data exceed the Canadian standard. As Figure 1
illustrates, ground-based MoEF readings often record higher values than satellite-based

MERRA-2 readings do.
Scatter Plot SO2 MoEF vs SO2 MERRA-2

10 ral
SO2 MERRA-2 (Satel mtiyend)

Figure 1. Scatter plot of local SOz ground-based and satellite-based measurements, 2018
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Source: Author’s computation

The discrepancy arises from methodological differences in data construction. The MoEF
dataset represents ground-based measurements, combining limited real-time monitoring with
passive samplers—typically one or two points—each designed to reflect four distinct
environments: industrial areas, residential zones, transportation corridors, and office districts.
These measurements are aggregated on a biannual basis.

In contrast, the SO, data from MERRA-2 represent satellite-based estimates with broader
spatial coverage. However, such estimates are derived at a coarse spatial resolution (~50 x
70 km) and reflect pollutant concentrations from higher atmospheric layers. The accuracy of
these methods may be compromised by cloud cover and atmospheric interference.

As aresult, ground-based data often record higher pollutant concentrations than satellite-
derived estimates do. Nonetheless, both sources remain susceptible to measurement error,
potentially introducing classical measurement error that may attenuate estimated effects or bias
results—particularly when the misalignment between measured and true exposure correlates
with disease incidence.

On the health side, Table 2 presents prevalence estimates from the 2018 Riskesdas
survey. ARIs affect 32.35% of the population (85.3 million), but only 4.37% report a diagnosis.
Pneumonia affects 14.5% (symptomatic) and 2.01% (diagnosed) of patients. Asthma is least
prevalent (1.45% symptomatic, 0.28% diagnosed), suggesting underdiagnosis or access
barriers.

Table 2. Cases of ARI, pneumonia, and asthma in Indonesia, 2018

Types of Prevalence Rate Total Population Prevalence Rate Total Population
Illnesses (All Cases) (All Cases) (Self-reported (Self-reported
Diagnosed Diagnosed
Cases) Cases)
ARI 32.35% 85,307,522 4.37% 11,534,516
Pneumonia 14.50% 38,242,086 2.01% 5,295,961
Asthma 1.45% 3,830,087 0.28% 745,533

Source: (Kementerian Kesehatan RI, 2018)
Note: Author’s own processing

Estimates combine self-reported diagnoses with assessments based on self-reported
symptoms; the total population of Indonesia is 263,722,841.

Ordinary least squares (OLS)
Table 3. Comparison of Estimation Results: Baseline, Model with Individual-level
Controls, and Full Model with Individual-level and District-level Controls in OLS
Regression
ARI Pneumonia Asthma

Q)] 2 3 Q)] 2 (€)) Q)] 2 (3) Full
Baseli +Indiv Full Baseli +Indiv Full Baseli +Indiv Model

ne idual- Model ne idual- Model ne idual-
level level level
NO; 0.0004 0.0011 0.0008 - 0.0000 - 0.0000 - -
S5%*kEk gk 49***  (0.0003 491 0.0004 107 0.0000 0.0001
86F** 09*** 437 00***
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(0.000  (0.0000 (0.000 (0.000 (0.000 (0.000 (0.0000 (0.000 (0.0000

0832) 852)  110)  0623) 0643) 0831) 219)  0230) 297
Obs. 882255 882255 860823 882255 882255 860823 882255 882255 860823
Ftest 29.95 2131.8 1457.6 3846 1497.0 10656 0238 3265 219.8
R-sq.  0.0000 0.0527 0.0544 0.0000 0.0376 0.0404 0.0000 0.0084 0.0086

339 436 00270 4 1
SO; - 0.0004 - - 0.0001 - 0.0000 0.0000 -
0.0000 42***  0.0009 0.0002 22 0.0006 547 376 0.0000

610 (0.0001 02%*%  53*%% (0,000 35%*  (0.0000 (0.000 0953
(0.000 18) (0.000  (0.000 0889)  (0.000 315)  0318)  (0.0000
119) 133)  0895) 100) 358)
Obs. 882255 882255 860823 882255 882255 860823 882255 882255 860823
Ftest 0261 21243 1457.6 7.993 1497.0 10656 3.012 3264  219.8
R-sq.  0.0000 0.0525 0.0544 0.0000 0.0376 0.0404 0.0000 0.0084 0.0086
00296 0906 0341 4 1
SO, 0.0004 0.0011 0.0005 - - 0.0000  0.0000 - -
(MER  11%%%  O%%%  92%%x (0006 0.0000 117 283 0.0000  0.0002
RA2)  (0.000 (0.0000 (0.000 19*** 383 (0.000  (0.0000 358 G2
0846) 859)  140)  (0.000 (0.000 114)  226)  (0.000  (0.0000

0665)  0680) 0235)  405)
Obs. 101729 101729 860823 101729 101729 860823 101729 101729 860823
0 0 0 0 0 0

F test 23.61 2518.5 1456.7 86.62 1873.9 1064.4 1.567 372.6 221.1
R-sq. 0.0000 0.0539 0.0544 0.0000 0.0406 0.0403 0.0000 0.0083 0.0086
232 851 0154 5 6

Source: OLS regression results by the author
Note: Author’s own processing. Standard errors in parentheses * p < 0.05, ** p <0.01, *** p
<0.001.

Each panel compares estimates across three specifications: (1) the baseline model
without controls, (2) the model with individual-level controls (X), and (3) the fully controlled
model including both individual-level (X) and district-level (Z) variables. The pollution
variables include the district-level concentrations of NO; and SO;, which are measured from
both ground-based monitoring and satellite-derived data. All regressions are estimated at the
individual level via OLS, and the results are shown for three health outcomes: acute respiratory
infections (ARIs), pneumonia, and asthma. The fully controlled OLS model (3) is used as the
primary baseline for subsequent causal inference tests, including CST and IPW.

Table 3 presents the evolution of regression estimates across three model specifications:
(1) a baseline model including only NO; or SO> exposures, (2) a model incorporating
individual-level controls, and (3) a full model that additionally includes district-level
covariates. This stepwise structure facilitates assessment of how much bias is addressed by
sequentially adjusting for observed confounders.

For NO», the coefficients and explanatory power of the models increase as more
covariates are introduced. In the case of the ARI, the coefficient increases from 0.000455 at
the baseline to 0.00114 with individual-level controls and then slightly decreases to 0.000849
in the full model, whereas R? improves substantially from 0.00003 to 0.0544. This finding
indicates that most omitted variable bias stems from individual-level confounding. For
pneumonia, the coefficient of NO shifts from significantly negative to slightly positive before
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returning to a significant negative estimate. In the asthma models, NO> is insignificant at first
but becomes significantly negative (—0.000100) once full controls are applied, confirming
model refinement through the inclusion of both individual and district-level variables.

For SO, (MoEF), the ARI coefficient begins as statistically insignificant, becomes
significantly positive with individual-level controls, and becomes significantly negative in the
full specification, coinciding with an increase in R? to 0.0544. A similar reversal occurs for
pneumonia, reinforcing the importance of controlling for district-level environmental
confounders. In contrast, SO, was not significantly related to asthma across the models.
Satellite-derived SO, (MERRA-2) is consistently positively and significantly associated with
the ARI across specifications, albeit with slight attenuation. For pneumonia, the coefficient
shifts from significantly negative to statistically null and then to slightly positive. For asthma,
the relationship switches from a weakly positive to a significantly negative association (—
0.000262), with R? rising from near zero to 0.00866, indicating improved model fit with full
adjustment.

Robustness
Coefficient Stability Test and Inverse Probability Weights

To assess the robustness of the estimated pollution—health associations, we employed
both coefficient stability test (CST) and inverse probability weighting (IPW) methods,
followed by Oster’s (2019) coefficient stability method. In addition to reporting both the non
and weighted fully controlled OLS estimates, we present bias-adjusted treatment effects (p if 6
= 1), the corresponding & values required to nullify the effect (& for B = 0), and the assumed
maximum explanatory power (R? max) of the full model—which is calculated as 1.3 times the
R? from the weighted fully controlled model.

Table 4. Comparison of Estimation Results: Method Non-weighting vs. Reweighting via

IPW
Variable Non Reweighting
Full Full pif6 =1 éforp =0 R’max
Controlled Controlled
Effect Effect
ARI
NO; 0.000849***  0.000618***  0.000682***  6.218 0.06864
(0.000110) (0.000166)
R-squared 0.0544 0.0528
SO (Ground-  -0.000902***  -0.0000160 -0.000306 -0.0605 0.06864
based) (0.000133) (0.000212)
R-squared 0.0544 0.0528
SO; (Satellite-  0.000592***  0.000235 -0.000709 0.400 0.06864
based) (0.000140) (0.000161)
R-squared 0.0544 0.0528
Pneumonia
NO; -0.000409***  -0.000519***  -0.000463***  3.136 0.05499
(0.0000831) (0.000126)
R-squared 0.0404 0.0423
SO, (Ground-  -0.000635***  -0.0000623 -0.000247 -0.377 0.05499
based) (0.000100) (0.000158)
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R-squared 0.0404 0.0423
SO, (Satellite-  0.0000117 -0.000579***  -0.000736***  2.358 0.05499
based) (0.000114) (0.000132)
R-squared 0.0403 0.0423
Asthma
NO; -0.000100***  -0.0000315 -0.0000749 -1.217 0.011297
(0.0000297) (0.0000441)
R-squared 0.00861 0.00869
SO; (Ground-  -0.00000953 -0.000124* -0.000142* -20.92 0.011297
based) (0.0000358) (0.0000633)
R-squared 0.00861 0.00869
SO; (Satellite-  -0.000262***  -0.000316***  -0.000691***  -40.35 0.011336
based) (0.0000405) (0.0000465)
R-squared 0.00866 0.00872

Source: CST and IPW analysis results by the author
Note: Standard errors in parentheses * p < 0.05, ** p <0.01, *** p <0.001. Full Controlled Effect:

The coefficient from the regression with all observable controls. “Non” refers to non-
weighted OLS; “IPW” is weighted by inverse probability. R-squared: Indicates the proportion
of variance in the dependent variable explained by the model. Both non-weighted and IPW-
adjusted models are provided. B if 6 = 1: The bias-adjusted treatment effect assumes that the
selection of unobserved confounders is equal in magnitude to that of observables (6 = 1),
following (Oster, 2019). R2 max: Maximum R-squared value used to simulate the bias-adjusted
treatment effect. We assume R2 max = 1.3 x R2 (IPW-adjusted models). 6 for B = 0: The
minimum strength of selection on unobservable (relative to observables) variables required to
reduce the estimated effect to zero. A large 6 implies robustness; a low or negative 6 indicates
sensitivity to omitted variables.

For the ARI (Table 4.), the estimated NO; treatment effect decreases to 0.000682 under
IPW, with a strong & value of 6.218, indicating high robustness to unobserved confounding. In
contrast, SO» (ground-based) attenuates to —0.000306 with a weak 6 (—0.0605), and the
satellite-based SO estimate becomes —0.000709 with a low & of 0.400. The sign reversal and
attenuation of SO- effects suggest possible attrition bias due to the underrepresentation of less
industrialized areas. Additionally, the unusual negative value in the estimated SO effect
indicates a potential bias—measurement error and omitted variable bias—and heterogeneity
pollution-health effects.

For pneumonia (Table 4.), the NO; effect becomes slightly more negative (—0.000463),
with a strong 0 value of 3.136, indicating moderate robustness. The SO, effect (ground-based)
weakens to —0.000247 with a non-robust 6 (—0.377), whereas satellite-based SO has a stronger
negative effect (—0.000736) with a & of 2.358. These shifts again highlight the influence of
attrition bias. Notably, the unusual negative values in the estimated effects of NO2 and SO»
may indicate potential sources of bias—such as measurement error, omitted variable bias, and
heterogeneity in pollution—health effects.

For asthma patients (Table 4.), all the pollutant estimates turn negative. NO, attenuates
to —0.0000749 with a non-robust & (—1.217), whereas SO, becomes more negative both in
ground-based (—0.000142, 6 = —20.92) and satellite-based (—0.000691, 6 = —40.35) models.
These consistent unusual negative values and extreme 0 values suggest strong susceptibility to
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measurement error, unobserved bias, and heterogeneous pollution—health effects across
subgroups.

Heterogeneity
Age-Based Subgroup Estimation

Having established the sensitivity of pooled models to attrition bias and unobserved
confounding factors, we proceed to stratify the analysis across five age-defined subgroups to
uncover heterogeneity in pollution—health responses and assess their robustness via Oster’s
coefficient stability test and reweighting via IPW. In addition to reporting the weighted fully
controlled OLS estimates, we present bias-adjusted treatment effects (p if 6 = 1), the
corresponding o values required to nullify the effect (6 for B = 0), and the assumed maximum
explanatory power (R? max) of the full model—which is calculated as 1.3 times the R? from
the weighted fully controlled model.

Across all the patients with ARIs (Table 5. ), NO> shows strong, positive, and robust
effects in children (0—4: 0.00321, & = 3.422; 5-17: 0.00101, 6 = 1.829), whereas effects in
adults aged 50—74 are smaller and not robust. SO, appears negative and less robust in children
but becomes positive and robust in adults aged 50—74 across data sources. In individuals
diagnosed with ARIs, NO> remains robust in children, becomes negative in older adults, and is
positive in adults aged 18—49 years. SO2 from MoEF is positive and strong in adolescents (5—
17, 6 = 8.154), whereas satellite SO; is positive and robust across all ages for diagnosed ARIs.
Unusual negative estimates for NO2 and SO> suggest possible bias from measurement error
and omitted variable bias in pollution—health effects.

Table 5. ARI, Pneumonia, and Asthma—Pollutant Age-Based Subgroup Estimation

Variable 0-4 5-17 18-49 50-74 75+
Full B 6 Full B 6 Ful B 6  Full B 6 Full § 1)
Con if§= fo Con if§= fo Con if fo Contr if fo Contr if fo
troll 1 r troll 1 r trol 6= r olled 6= r olled 6= r
ed B =ed B =ed 1 B = Effect 1 B = Effec 1 B =
Effe 0 Effe 0 Effe 0 0 t 0
ct ct ct

ARI

NO 0.00 0.003 3. 0.00 0001 1. 0.00 - 0. - 0.00 0. - - 2.

2 338 21*** 42 168 01** 82 008 0.00 67 0.000 025 72 0.001 0.00 28
Hok ¥ 2 wkxox 9 95 005 1 501 0 3 81 130 4
0.0 (0.0 0.0 78 (0.000 (0.00
006 003 002 357) 105)

26) 49) 38)

R- 0.06 0.05 0.03 0.038 0.032

squ 25 48 76 3 5

are

d

SO - - - - - - 0.00 - 0. 0.000 0.00 - - - 3.

2 0.00 0.001 0. 0.00 0.001 0. 005 000 23 322 065 1. 0.001 0.00 25

(Gr 031 28 36 026 05 37 175 020 3  (0.000 3 13 21 089 0

ou 5 4 6 8 (0.0 7 456) 9 (0.00 8

nd- (0.0 0.0 003 126)

bas 007 004 02)

ed) 895 46)

R- 0.06 0.05 0.03 0.038 0.032

squ 25 48 76 3 5
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arc

d
SO 0.00 - 0. 0.00 - 0. - - - - 0.00 0. - - 1.
2 232 0.000 91 141 0.001 68 0.00 000 0. 0.001 012 94 0.002 0.00 16
(Sa  *¥*  422*%*% 5 EE O 24%% 6 028 183 45 (0O8** 4**% 7 26 059
tell (0.0 * 0.0 * 3 9 (0.000 (0.00 9
ite- 005 003 (0.0 376) 127)
bas 74) 29) 002
ed) 32)
R-  0.06 0.05 0.03 0.038 0.032
squ 27 49 76 3 6
are
d
Pneumonia
NO - 0.000 0. 0.00 0.000 41 - - 7. - - 2. - - 3.
2 0.00 0579 69 071 919* .0 0.00 0.00 45 0.001 0.00 62 0.004 0.00 28
010 4  o** * 6 071 081 6 79%* 146 9 02* 371 5
(0.0 002 * * 281) (0.00
003 74) (0.0 0916)
10) 001
86)
R-  0.01 0.05 0.03 0.041 0.042
squ 75 24 78 5 5
are
d
SO - - - - - - 000 0.00 1. 0000 0.00 - - - 2.
2 0.00 0.000 3. 0.00 0.001 1. 034 016 75 439 075 1. 0.001 0.00 30
(Gr 035 496 61 079 31* 93 1 1 9 (0.000 2 70 52 092 3
ou 8 8 o 3 (0.0 352) 8 (0.00 3
nd- (0.0 (0.0 002 104)
bas 003 003 23)
ed) 72) 62)
R-  0.01 0.05 0.03 0.041 0.042
squ 75 24 78 5 5
are
d
SO - - 2. 0.00 - 0. - - 6. - - . - 0.00 0.
2 0.00 0.001 94 016 0.000 42 0.00 0.00 59 0.001 0.00 09 0.002 130 77
(Sa 074 06* 8 9 492 0 053 103 4 65*** 031 2 35% * 8
tell 3* (0.0 Jk o dkx (0.000 4** (0.00
ite- (0.0 002 (0.0 315) * 114)
bas 002 86) 001
ed) 97) 91)
R-  0.01 0.05 0.03 0.041 0.042
squ 75 24 78 7 6
are
d
Asthma
NO 0.00 0.000 - - - - 0.00 000 1. - - 2. - - 2.
2 009 254 0. 0.00 0.000 0. 002 000 11 0.000 0.00 34 0.000 0.00 43
85 99 003 153 36 58 342 3 235% 017 6 507 037 1
(0.0 7 13 4 (0.0 (0.000 6* (0.00 7
001 (0.0 000 119) 0485)
70) 000 618)
733
)
R-  0.01 0.00 0.00 0.007 0.018
squ 75 947 513 20 4
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arc

SO - - - - - - - 0.000 0.00 -  0.000 0.00 -
2 0.00 0.000 22 0.00 0.000 1. 0.00 0.00 21 0389 011 0. 466 060 4.
(Gr 045 408 3 004 092 03 019 022 4 (0.000 O 62 (0.00 8 36

ou 9 23 2 3% 0* 8 162) 0  0438) 4
nd- (0.0 (0.0 (0.0

bas 002 001 000

ed)  54) 01) 951)

R- 001 0.00 0.00 0.007 0.018

squ 75 947 513 20 4

are

d

SO 1. - - 2. 0.00 0.

2 0.00 0.000 40 0.00 0.000 0. 0.00 0.00 11 0.000 0.00 60 0.000 045 47
(Sa 035 225* 3 008 366 8 032 072 3 o651** 094 5 216 8 7

tell 7% 27 0 3% ok 5 % 6** (0.00
ite- (0.0 (0.0 * * (0.000 * 0568)
bas 001 000 0.0 138)
ed) 40) 777 000

) 659)
R- 001 0.00 0.00 0.007 0.018
squ 74 947 516 32 3
are
d

Source: Age-subgroup analysis with IPW and CST by the author

Note: Standard errors in parentheses * p < 0.05, ** p <0.01, *** p <0.001. The fully controlled effect
refers to the coefficient estimated from the IPW-weighted OLS regression model including the full set
of observed control variables. The model adjusts for sample imbalance via inverse probability weighting
(IPW) to mitigate attrition bias across subgroups. R-squared: Indicates the proportion of variance in the
dependent variable explained by the model. B if 6 = 1: The bias-adjusted treatment effect assumes that
the selection of unobserved confounders is equal in magnitude to that of observables (5 = 1), following
(Oster, 2019). R2 max: Maximum R-squared value used to simulate the bias-adjusted treatment effect.
We assume R2 max = 1.3 x R2 (IPW-adjusted models). 6 for B = 0: The minimum strength of selection
on unobservable (relative to observables) variables required to reduce the estimated effect to zero. A
large 6 implies robustness; a low or negative o indicates sensitivity to omitted variables.

For pneumonia (Table 5.), NO» effects are positive in children (0—4: 0.0000579, & =
0.694; 5-17: 0.000919, 6 = 41.06), whereas SO> is negative in children but becomes positive
and robust for adults aged 18-74 (MoEF) and for those aged 75+ (satellite). Diagnosed
pneumonia shows robust NO- effects only in children aged 0—4 years and robust SO effects
across all age groups (MoEF) and all but the youngest (satellite). For asthma patients (Table
5.), NOz is positive in young children and robust in adults aged 18—49 years. SO, is generally
negative in children but positive in older adults, with satellite data confirming significance only
in the 75+ group. In individuals diagnosed with asthma, both NO- and satellite SO> effects are
negative, whereas MoEF SO; remains positive and robust in adults aged 50—74 years. Again,
negative estimates of NO; and SO; may reflect bias from measurement error, omitted
confounders, and underlying heterogeneity in exposure—response relationships.

Air pollution is a classic negative externality—its costs are underpriced, diffuse, and
deeply embedded in urban economies. Empirical research has shown that pollutants such as
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PM>s5, NO», and SO, significantly affect economic outcomes, ranging from asset prices and
corporate valuations to national GDP. In urban housing markets, residents internalize air
quality, as seen in Mexico City, where a 10% rise in AOD reduces home values by 1.3% and
raises wages by 2.3% (Goodwin et al., 2021); in Shanghai, a 1 pg/m?® reduction in PM> s and
NO:> raises housing prices by 155.93 and 278.03 yuan/m?, respectively (Zou et al., 2022),
whereas PM» 5 and SO; reductions from the Blue-Sky Protection Campaign increased home
values by up to 6% in Changsha (Feng et al., 2024), underscoring the capitalization of cleaner
air. Pollution also affects corporate finance and markets: in China, a 1 ug/m? increase in PMa s
leads to a 0.3-point drop in ESG scores for manufacturing firms, especially in polluting
industries (Zhao et al., 2024); in New York, daily S&P 500 returns fall by nearly 12% on high-
PMb 5 days owing to cognitive strain on traders (Heyes et al., 2016); and NO, disrupts earnings
forecasts after site visits in polluted cities, highlighting its role as a behavioral pollutant that
alters mood, attention, and risk perception (Dong et al., 2021). Finally, air pollution undermines
labor productivity across physical and cognitive tasks: a 10-ppb rise in ozone reduces
agricultural output by 5.5% (Zivin & Neidell, 2012), a 10-point API increase cuts daily call
center output by 0.35% Chang et al., (2019), and a 1 ug/m?® drop in PMas increases firm
productivity by 0.82%, whereas a 1% national PM> 5 reduction could increase GDP by 0.039%
(Fuetal., 2021). Collectively, these findings show that pollution control yields not only health
but also substantial economic gains.

Air pollution not only leads to productivity losses but also imposes substantial health
costs, particularly through its effects on respiratory illnesses. Using the IPW model to correct
for sampling bias, this study revealed that NO> remains significantly and robustly associated
with the ARI, indicating a stable causal effect even after adjusting for attrition. These findings
are in line with the well-documented link between NO» and ARI, which is consistent with
localized studies such as (Andriati et al., 2021; Surury et al., 2022), which show that higher
NO:; concentrations increase the incidence of ARI. However, NO; appears to have no
significant effect on asthma and is even negatively associated with pneumonia—findings that
are unusual and diverge from established biomolecular signaling literature and localized
evidence from (Anurogo et al., 2023; Arsyad & Priyana, 2023), who reported that rising NO2
levels increase asthma incidence.

Similarly, SO had no significant effect on the incidence of ARIs or pneumonia on the
basis of ground-based measurements and had a significantly negative effect on asthma
incidence. When satellite-based data are used, the effect of SO2 on the incidence of ARIs
remains insignificant and is significantly negatively associated with pneumonia and asthma.
These results are uncommon and inconsistent with the known biomolecular mechanisms
linking SO> to respiratory outcomes and contrast with findings from (Anurogo et al., 2023;
Arsyad & Priyana, 2023), who reported positive associations between SO> concentrations and
asthma incidence. (Surury et al., 2022), using annual SO, data in Jakarta, also reported that
SO; increased the incidence of ARIs, although the relationship was nonlinear and inconsistent.
(Lestari & Haryanto, 2022), using now-unavailable monthly SO, data from Jakarta’s
environmental agency, reported an atypical and inconsistent correlation between SO> and ARI
among children.

Several factors may explain these inconsistencies. First, the quality of the NO2 and SO»
concentration data used. Although this study utilized ground-based pollutant data covering
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82% of Indonesia, the data quality may vary regionally, as it largely relies on passive samplers,
with only one or two sampling points estimated to represent each of the four distinct sites per
district—aggregated biannually. This stems from limitations in automatic monitoring
infrastructure: in 2018, Indonesia had only 13 cities equipped with automatic pollutant
monitoring, covering just 2.53% of the country. To enhance coverage, the study complemented
ground-based data with satellite-derived pollution estimates. However, these satellite
measurements have low spatial resolution and capture pollutants from higher atmospheric
layers, which are often affected by clouds and atmospheric interference, which may lead to
measurement error and misrepresentation of true individual-level exposure.

These data limitations likely contribute to discrepancies with the established literature.
For example, Liu & Ao, (2021), using hourly ground-based pollutant data from Taiwan,
reported that a one-unit improvement in the AQI results in NT$2.3 billion (approximately
US$74 million) savings in annual outpatient respiratory expenditures. Similarly, Sofwan et al.,
(2021) used hourly pollutant data in Malaysia and reported significant positive associations
between pollutants (including NO> and SOz) and respiratory illness risk.

Second, although this study employed coefficient stability testing to assess robustness to
unobservable variables (assuming equal importance between observed and unobserved
variables with 6 = 1), the adjusted results suggest limited correction and indicate remaining
bias from unobserved confounders. Omitted variable bias at both the individual and regional
levels may distort estimations. Community-level prevention and healthcare investment,
regional air quality control policies, and local allergen levels are key unobserved variables.
Individual behaviors—such as mask usage, outdoor exposure duration, and occupational
proximity to pollution sources—also remain unobserved. Owing to these data limitations,
heterogeneity across Indonesia’s population and geography may have introduced bias in the
study’s estimates, particularly regarding the NO> pneumonia and NO> asthma results and the
generally negative SO: findings, which deviate from well-established biomolecular logic.

Age-stratified analysis confirmed that children (0—4 and 5-17 years) are particularly
vulnerable, with NO> significantly increasing the risks of ARI, pneumonia, and asthma,
supporting the findings of the clinical literature on childhood immune immaturity (Azmi et al.,
2016). Among adults, NO> increases the ARI from 5074, whereas SO; increases the ARI from
50—74 (across both data sources). For asthma, NO> is robust in adults 18—49, and SO is robust
in the oldest adults 75+. These results suggest that cumulative exposure, lifestyle, and
comorbidities heighten adult susceptibility, especially to SO, echoing prior links to late-life
asthma Wu et al., (2014), and reinforce the urgency of quantifying pollution’s long-term
economic burden.

Health effects from air pollution, particularly SOz, have economic implications.
Ramakrishnan et al., (2016) reported that SO» significantly reduces GDP per capita by 0.12
percentage points per 1% increase in emissions across high-income countries. Combined with
broader literature on productivity loss (Chang et al., 2019; Fu et al., 2021; Zivin & Neidell,
2012), housing value decline (Feng et al., 2024; Goodwin et al., 2021), and impaired firm
valuation Zhao et al., (2024), the findings show that air quality is not just a health issue but also
a pillar of economic resilience. Pollution control must be prioritized as an investment in human
capital and long-term prosperity.
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CONCLUSION

This study reveals that NO: and SO: pollutants significantly elevate respiratory disease
incidence in Indonesia, with NO: showing robust positive associations with acute respiratory
infections (ARIs) among children (0—4 and 5-17 years) and asthma in young adults (18—49
years), while SO: impacts ARIs in middle-aged adults (50—74 years) and asthma in the elderly
(75+ years), underscoring life-course vulnerabilities. Unexpected negative or non-significant
links (e.g., NO: with pneumonia/asthma) highlight data limitations like sparse spatial/temporal
pollution coverage and measurement bias. Policy recommendations include pollutant-specific
WHO-aligned alert systems with public real-time access, subdistrict-level automated
monitoring, and integrated national health-environmental data platforms. Sensitivity analyses
via inverse probability weighting also flag PM..5's role in ARIs/asthma, suggesting future
research employ granular national/regional data to explore nonlinear/threshold effects,
economic cost-of-illness valuations, and multi-pollutant interactions for refined pollution
control strategies.
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