
1 http://eduvest.greenvest.co.id

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

p- ISSN 2775-3735- e-ISSN 2775-3727

A Comparative Study of Dynamic Load Balancing Algorithms for

Microservices in Heterogeneous Multi-Cloud Environments

Domma Uli Sitinjak, Galura Muhammad Suranegara

Universitas Pendidikan Indonesia Kampus Purwakarta, Indonesia

Email: dommauli@upi.edu, galurams@upi.edu

ABSTRACT

Microservices-based application architectures in cloud environments require load

balancing mechanisms that can adapt to differences in server capacity and workload

fluctuations. This study aims to evaluate the performance of dynamic load balancing

algorithms—Least Connection, Weighted Least Connection, and Least Response Time—in

heterogeneous server environments using Amazon Web Services (AWS) and Google Cloud

Platform (GCP). The evaluation was conducted through staged testing by observing

application performance based on p95 latency, throughput, error rate, and load distribution

patterns. The results indicate that no single algorithm consistently outperforms the others

across all scenarios and platforms. Weighted Least Connection tends to produce a more

proportional load distribution according to server capacity, while Least Connection and

Least Response Time are more influenced by the number of active connections and initial

response time. Overall, both AWS and GCP are able to maintain application performance

stability across all load levels. These findings confirm that the effectiveness of dynamic load

balancing algorithms in heterogeneous cloud environments is influenced by workload

characteristics and server capacity, indicating that algorithm selection should be tailored

to the specific system objectives.

KEYWORDS Load balancing Dynamic, Heterogen, Least Connection, Weighted Least

Connection, Least Response Time, AWS, GCP.

This work is licensed under a Creative Commons Attribution-ShareAlike

4.0 International

INTRODUCTION

The rapid advancement of information technology has brought significant

transformations to modern computing systems, enabling the delivery of services

that are faster, more efficient, and more reliable. Dependence on digital services

continues to increase, making the need for server infrastructures that can ensure

high availability and low latency increasingly critical. Dynamically fluctuating user

demand often creates bottlenecks on specific servers, which may lead to overload

conditions, delayed responses, and even operational service disruptions (Akerele et

al., 2024). Consequently, load balancing mechanisms have become an essential

strategy for maintaining system stability and consistent performance (G A & Pawar,

2024; Riskiono & Pasha, 2020). The implementation of effective load balancing

strategies allows systems to sustain optimal performance despite high demand

http://sosains.greenvest.co.id/index.php/sosains
mailto:dommauli@upi.edu1
mailto:galurams@upi.edu2
https://creativecommons.org/licenses/by-sa/4.0/

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 2

fluctuations and unstable traffic conditions, while also ensuring service continuity

and improving the efficiency of computing resource utilization (Shafiq et al., 2021).

Load balancing refers to the distribution of workloads evenly among multiple

servers in order to increase throughput and reduce latency (Kaviarasan et al., 2023).

In practice, incoming requests are allocated to available servers and resources, with

the allocation process governed by specific algorithms. These algorithms are

generally classified into two main categories: static and dynamic load balancing,

each employing different approaches to achieve optimal load distribution (Trivedi

et al., 2023). Static load balancing algorithms distribute workloads without

considering the current condition of servers, whereas dynamic algorithms adjust

resource allocation based on real-time server status, such as the number of active

connections, memory usage, and CPU utilization (Oyediran et al., 2024). Both

approaches possess distinct characteristics and advantages, depending on workload

uniformity and the availability of system resources (Kumar et al., 2023).

Dynamic load balancing algorithms have proven to be more suitable for

heterogeneous environments, as they can adapt load distribution based on real-time

server conditions, resulting in higher performance and accuracy compared to static

algorithms (Maurya & Sinha, 2022; Sharma & Sharma, 2021). In contrast, static

algorithms perform optimally in homogeneous environments where workloads are

predictable and execution times are stable, with uniform configurations across all

machines. Examples of dynamic algorithms include Least Connection, Weighted

Least Connection, and Least Response Time. Least Connection directs new

requests to the server with the fewest active connections, while Least Response

Time routes requests to the server with the fastest response time combined with the

lowest connection load at a given moment. Meanwhile, Weighted Least Connection

distributes workloads by taking into account predefined processing capacities

assigned to each server (Rahman & Hadiwandra, 2023; Fawwazi et al., 2025; Arifin

et al., 2024). These dynamic approaches are more effective in heterogeneous

systems due to their flexibility in accommodating differences in resource capacity.

Several studies have explored the effectiveness of load balancing algorithms

in handling high server workloads. Sinlae et al. (2022) compared the Round Robin

and Least Connection algorithms to evaluate throughput across different demand

levels, demonstrating that Least Connection is more efficient under initial load

conditions due to more balanced connection distribution, although its performance

declines as the load increases. Ariestiandy et al. (2023) conducted a comparison of

the same algorithms in a clustered server architecture within a cloud computing

environment and found that variations in connection levels significantly affect

average response time, with Least Connection providing more stable responses than

Round Robin. Furthermore, Herdiansyah et al. (2025) evaluated the performance

of Least Connection and Round Robin algorithms on a Microsoft Azure–based web

server using response time, throughput, and connection stability as performance

metrics. Their results indicated that Least Connection performs better under

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

3 http://eduvest.greenvest.co.id

moderate to high workloads due to its ability to dynamically adjust load

distribution, while Round Robin performs more effectively under low workloads

by distributing requests evenly without considering server conditions. These

foundational studies are essential for understanding the efficiency limits and

performance characteristics of each algorithm before applying them to more

complex scenarios, such as heterogeneous environments or the use of advanced

dynamic algorithms (Alkhatib et al., 2021).

Despite extensive prior research, several limitations remain in existing load

balancing studies. Some research has not clearly classified load balancing

algorithms into static and dynamic categories or used such classifications as a basis

for algorithm selection, resulting in comparative outcomes that do not fully reflect

algorithm characteristics or behavior under the tested system conditions.

Additionally, several studies restrict their evaluations to a single cloud computing

platform, limiting the generalizability of findings across cloud environments with

differing infrastructure characteristics.

Based on these gaps, this study focuses on a comparative analysis of dynamic

load balancing algorithms—Least Connection, Weighted Least Connection, and

Least Response Time—implemented on a microservices-based web application

deployed in a heterogeneous server environment. Experiments are conducted on

two major cloud computing platforms, Amazon Web Services (AWS) and Google

Cloud Platform (GCP), to evaluate system performance using throughput, latency,

error rate, and load distribution as key performance metrics.

RESEARCH METHOD

This study adopts a quantitative approach using a quasi-experimental method

to evaluate the performance of dynamic load balancing algorithms in a

microservices-based web application deployed in a heterogeneous server

environment. The experiments are conducted on two cloud computing platforms,

namely Amazon Web Services (AWS) and Google Cloud Platform (GCP),

employing a non-equivalent group design due to differences in infrastructure

characteristics across the platforms. To maintain result comparability, traffic load

parameters and application configurations are consistently controlled, although the

specifications of the virtual machines are not entirely identical (Abraham &

Supriyati, 2022).

The research workflow illustrating the experimental stages and data analysis

process is presented in Figure 1.

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 4

Figure 1. Research Flow Diagram

Literature Review

At the literature review stage, the researchers examined theories, methods,

and findings from previous studies related to dynamic load balancing algorithms,

microservices-based web application architectures, and performance evaluation in

cloud computing environments. The literature review served as a foundation for

determining the research approach, selecting appropriate algorithms, and

formulating relevant evaluation metrics.

Experimental Design

The experimental design stage focused on developing testing scenarios that

include variations in load balancing algorithms, traffic load levels, and performance

evaluation parameters. This design aims to ensure that the experiments accurately

represent system conditions in a controlled and consistent manner across both tested

platforms.

System Design and Implementation

The system design and implementation stage involves constructing the

architecture and deploying the testing environment for a microservices-based web

application on two cloud platforms, namely AWS and GCP. The test environment

consists of a single load balancer node and multiple backend servers with varying

resource configurations to represent heterogeneous server conditions, as detailed in

Tables 1 and 2. The operating system used is Ubuntu 22.04 LTS (Jammy Jellyfish),

selected for its ease of installation and maintenance, as well as its broad

compatibility with cloud computing hardware on both AWS and GCP. All instances

are deployed within the same region to minimize the impact of geographical

latency, while differences in cloud platform characteristics remain a key aspect of

the analysis.

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

5 http://eduvest.greenvest.co.id

Table 1. Heterogeneous Server Specifications on AWS

Server Machine

Type

RAM

(GiB)

Virtual

CPU

Storage Region

AWS-Server-1 T3 micro 1 2 10 GiB SSD (gp3,

3000 IOPS default)

AP-

Southeast-1

AWS-Server-2 T3 small 2 2 10 GiB SSD (gp3,

3000 IOPS default)

AP-

Southeast-1

AWS-Server-3 T3 medium 4 2 10 GiB SSD (gp3,

3000 IOPS default)

AP-

Southeast-1

AWS

LoadBalancer

T3 micro 1 2 10 GiB SSD (gp3,

3000 IOPS default)

AP-

Southeast-1

Table 2. Heterogeneous Server Specifications on GCP

Server Machine

Type

RAM

(GiB)

Virtual

CPU

Storage Region

gcp-Server-1 e2-cutom-

2-1024

1 2 10 GB SSD

(Balanced

Persistent

Disk)

Asia-Southeast-1

gcp-Server-2 e2-custom

2-2048

2 2 10 GB SSD

(Balanced

Persistent

Disk)

Asia-Southeast-1

gcp-Server-3 e2-custom

2-4096

4 2 10 GB SSD

(Balanced

Persistent

Disk)

Asia-Southeast-1

gcpLoadBalancer e2-

custom-2-

1024

1 2 10 GB SSD

(Balanced

Persistent

Disk)

Asia-Southeast-1

The microservices-based web application was implemented using publicly

available source code obtained from a GitHub repository licensed under the MIT

License (Vithanage, 2018). This license grants permission for use, modification,

and distribution for academic purposes, provided that proper attribution is given to

the original developer (Open Source Initiative, 2024). The application was

deployed using a container-based architecture by leveraging Docker and Docker

Compose to simplify service management and orchestration. The application was

executed without modifying its core functional structure; only network

configurations and IP addressing were adjusted to meet the requirements of cloud-

based testing environments.

Nginx Plus was employed as a load balancer (reverse proxy) with the

implementation of dynamic load balancing algorithms, namely Least Connection,

Weighted Least Connection, and Least Response Time, to distribute incoming

requests across backend servers with heterogeneous resource characteristics. Nginx

Plus was consistently deployed on both AWS and GCP by downloading the license

package from a temporary IAM-protected repository, installing the official

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 6

packages, and verifying the service. The service achieved an active (running) status

on both platforms, indicating successful installation and license validation.

Load distribution across backend servers was monitored using Netdata, with

CPU utilization serving as the primary observation parameter. In addition,

supporting metrics such as platform-level CPU utilization were obtained through

the native monitoring services of each cloud provider, namely Amazon

CloudWatch and Google Cloud Monitoring. Figure 2 presents an overview of the

system implementation architecture and the testing scenarios applied in this study.

Figure 2. Diagram System

Testing

The performance evaluation of the load balancing algorithms was conducted

through load simulation using Apache JMeter, which executed HTTP GET requests

to the frontend to ensure that testing variables remained controlled. The evaluated

aspects included latency, throughput, error rate, and load distribution across servers,

with real-time CPU monitoring performed using Netdata and the native cloud

monitoring tools, namely Amazon CloudWatch and Google Cloud Monitoring.

CPU utilization values were used as indicators of server load conditions and served

as the basis for assessing load distribution throughout the testing process.

The testing scenarios are presented in Table 3, which outlines the load

parameters based on varying traffic levels. These scenarios were designed with

consideration of each server’s capacity to prevent overload conditions on any

individual server during testing, thereby ensuring reliable evaluation of system

performance and load balancing effectiveness.

Table 3. User Load Testing Scenarios

Scenario Number of Threads

(users)

Ramp-Up Period

(sec)

Loop

Count

Total

request

Low 50 20 20 1000

Medium 200 20 20 4000

High 500 20 20 10000

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

7 http://eduvest.greenvest.co.id

Data Analysis and Conclusion

Each testing scenario on both platforms and for each load balancing algorithm

was executed with five repetitions to ensure result consistency and reliability. The

reported values represent the average of these five runs to minimize transient

variations and to ensure that the data accurately reflect the stable performance of

each algorithm. System analysis was conducted by comparing latency, throughput,

error rate, load distribution, and average CPU utilization across all scenarios. These

results serve as the basis for evaluating the effectiveness of the load balancing

algorithms as well as for comparing platform performance under equivalent testing

conditions.

RESULT AND DISCUSSION

This section presents the experimental results and performance analysis of the

load balancing algorithms implemented in heterogeneous server environments

across the evaluated platforms. The experiments were conducted to assess the

effectiveness of each algorithm in distributing request workloads, maintaining

system performance stability, and ensuring resource efficiency under varying load

levels, namely low, medium, and high. The primary evaluation metrics include

throughput (RPS), latency with a focus on the 95th percentile, error rate (%), and

load distribution among servers.

The discussion of experimental results is divided into two main sections based

on the cloud platform. The first section examines the performance of the algorithms

in the AWS environment, while the second section discusses the results obtained in

the GCP environment. In addition to the primary metrics, CPU utilization is

included as a supporting indicator of resource efficiency. However, CPU usage is

not used as the primary metric for cross-platform comparison because the two cloud

environments differ in machine types, architectures, and default configurations that

cannot be fully standardized. Therefore, the comparative analysis across platforms

focuses on latency and throughput, while CPU utilization data are presented as

supplementary information to provide insights into computational load trends

during the experiments.

Each testing scenario on both platforms was executed with five repetitions to

ensure result consistency and reliability. The values reported in Tables 4 and 5

represent the average of these five runs to reduce transient variations and to ensure

that the data accurately reflect the stable performance of each algorithm. The

repeated trials exhibited minimal variation across runs, indicating that the final

values reliably represent actual system conditions on each platform rather than

anomalies from single executions. This approach ensures that the interpretation of

algorithm effectiveness is based on metrics validated through repeated

measurements.

Performance Analysis of Load Balancing Algorithms on AWS

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 8

The experimental results obtained in the AWS environment are presented in

Table 4, which summarizes the throughput, latency (95th percentile), error rate, and

load distribution for each load scenario.

Table 4. Load Balancing Algorithm Performance Results on AWS

Load

Balancer

Algorithm

Traffic Throughput

(kb/sec)

Avg

Latency

(ms)

Error

Rate

(%)

Load Distribution (%)

Server

1

Server

2

Server

3

Least

Connection

Low 49,86 49,60 0 1,80 1,50 2,11

Medium 195,58 49,40 0 2,53 1,84 2,04

High 489,24 48,80 0 5,71 2,80 3,83

Weighted

Least

Connection

Low 49,70 56,80 0 1,01 1,60 2,69

Medium 194,68 50,20 0 1,62 2,32 3,62

High 486,72 48,80 0 2,65 3,58 4,97

Least

Response

Time

Low 49,68 51,80 0 2,20 1,50 1,33

Medium 195,76 50,60 0 1,86 2,13 2,29

High 486,72 48,80 0 2,94 1,94 2,85

Testing in the AWS environment demonstrates consistent system behavior

across all load balancing algorithms, particularly in terms of scalability and

performance stability. Across the three load levels, throughput increases linearly

with the number of incoming requests, reaching approximately 49 kb/sec under low

load, increasing to around 195 kb/sec under medium load, and approaching 490

kb/sec under high load. This linear growth pattern indicates that the heterogeneous

server architecture is able to maintain good performance scalability. No throughput

degradation is observed for any of the algorithms, suggesting that all three load

balancing mechanisms operate stably despite differences in server capacity.

The p95 latency metric is used to represent response quality under worst-case

conditions experienced by the majority of requests and is considered more

representative than average latency alone. The experimental results show that p95

latency remains within the range of 48–56 ms for all algorithms and load levels.

Weighted Least Connection records the highest latency under low traffic conditions

(56.80 ms), which decreases to 48.80 ms as the load increases. In contrast, Least

Connection and Least Response Time maintain nearly identical latency values in

the range of 48.80–51.80 ms, indicating more consistent response behavior. These

latency patterns are influenced by how each algorithm utilizes heterogeneous

resources. For Weighted Least Connection, higher initial latency occurs because

high-weight servers are not yet fully utilized under low load; however, as traffic

increases, the algorithm effectively leverages the capacity of larger servers,

resulting in lower latency. Conversely, Least Connection and Least Response Time

exhibit nearly identical latency values, indicating that although these algorithms do

not account for server capacity, the applied workload remains within instance limits

and does not trigger significant latency increases.

Error rate serves as a key indicator of system reliability, and all algorithms

achieve a 0% error rate across all testing scenarios. The absence of failed requests

indicates that the system operates within a safe processing capacity, preventing

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

9 http://eduvest.greenvest.co.id

overload conditions or packet loss during request handling. This outcome is

supported by workload levels that remain within instance capabilities and by load

distribution decisions that prevent any single server from becoming excessively

burdened.

The most pronounced differences among the algorithms appear in the load

distribution parameter. Under the Least Connection algorithm, the load distribution

pattern shows a tendency to select lower-capacity servers more frequently than

higher-capacity ones. In high-traffic scenarios, smaller servers handle 5.71% of

requests, while larger servers receive only 2.80%. This pattern occurs because Least

Connection prioritizes servers with fewer active connections, without considering

their processing capacity. A similar pattern is observed in the Least Response Time

algorithm, where smaller servers handle 2.94% of the workload under high traffic,

indicating that Least Response Time is more influenced by faster initial response

times than by actual server capacity. This behavior may lead to bottlenecks on

smaller servers, particularly in large-scale scenarios.

In contrast, the Weighted Least Connection algorithm does not exhibit these

issues. Across all traffic levels, it distributes workloads more proportionally

according to each server’s capacity. This is reflected in a more balanced load

distribution, where higher-capacity servers receive a slightly larger share of the

workload while remaining within controlled limits. This behavior occurs because

Weighted Least Connection normalizes the number of active connections based on

each server’s assigned weight, ensuring that even though larger servers handle more

connections, the connection-to-weight ratio remains low. As a result, higher-

capacity servers absorb greater workloads in a controlled manner, while lower-

capacity servers are protected from overload.

Performance Analysis of Load Balancing Algorithms on GCP

The experimental results obtained in the GCP environment are presented in

Table 5, which summarizes throughput, latency (95th percentile), error rate, and

load distribution across all load scenarios.

Table 5. Load Balancing Algorithm Performance Results on GCP

Load

Balancer

Algorithm

Traffic Throughput

(kb/sec)

Avg

Latency

(ms)

Error

Rate

(%)

Load Distribution (%)

Server

1

Server

2

Server

3

Least

Connection

Low 49,56 54,20 0 3,20 2,93 2,61

Medium 195,90 52,20 0 3,61 3,22 2,52

High 487,90 46,20 0 4,78 5,68 2,63

Weighted

Least

Connection

Low 49,64 51,20 0 2,89 3,03 4,83

Medium 195,28 47,80 0 2,09 3,43 5,25

High 487,66 47,20 0 3,70 4,35 5,38

Least

Response

Time

Low 49,24 56,20 0 3,60 4,45 2,56

Medium 196,20 50,80 0 4,62 3,12 3,15

High 487,82 47,20 0 3,36 3,43 2,93

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 10

Testing in the GCP environment demonstrates consistent system performance

patterns across all load balancing algorithms, with stable throughput increases

observed at each load level. Throughput for all algorithms increases linearly as

request volume grows, from approximately 49 kb/sec under low load, to around 195

kb/sec under medium load, and approaching 488 kb/sec under high load. The

consistency of this pattern indicates that the server architecture is capable of

maintaining performance scalability without degradation for any algorithm. This

behavior further suggests that workloads are effectively distributed, preventing

processing capacity degradation despite increasing request volumes.

In terms of p95 latency, all algorithms also exhibit relatively stable behavior,

although the differences are more pronounced than those observed in the AWS

environment. All three algorithms demonstrate similar latency reduction trends as

load increases. Least Connection records a latency of approximately 54 ms under

low load, which decreases under medium load and reaches around 46 ms under high

load. Weighted Least Connection follows a similar trend, decreasing from

approximately 51 ms under low load to around 47 ms under high load. Meanwhile,

Least Response Time produces the highest latency under low load at approximately

56 ms, then declines to around 50 ms under medium load and stabilizes at

approximately 47 ms under high load. This decreasing latency trend is driven by

increasingly stable workload characteristics as traffic increases. Under low load,

performance disparities among servers are more pronounced, making algorithms

sensitive to initial metrics—such as Least Response Time—which results in higher

initial latency. As the load increases, all servers are forced to operate more

consistently, reducing response time variability and leading to lower latency values.

All algorithms again record an error rate of 0% across all load levels,

indicating stable system reliability under all testing scenarios. The absence of failed

requests confirms that the load distributions generated by each algorithm remain

within server capacity limits and that the distribution decisions effectively prevent

overload conditions on any individual server.

Differences in algorithm characteristics are most evident in the load

distribution parameter. Under the Least Connection algorithm, the load distribution

pattern shows a tendency that is not fully proportional to server capacity. Lower-

capacity servers continue to receive a relatively larger share of the workload,

accounting for approximately 3.20% under low load and increasing to 4.78% under

high load, while higher-capacity servers receive smaller portions in certain

scenarios. This pattern arises because Least Connection considers only the number

of active connections without accounting for server processing capacity.

A similar pattern is observed with the Least Response Time algorithm, where

smaller servers handle approximately 3.60% of the workload under low traffic and

continue to receive comparable shares under medium and high load, at

approximately 4.62% and 3.36%, respectively. This behavior indicates that the

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

11 http://eduvest.greenvest.co.id

algorithm prioritizes faster initial response times, even when computational

capacity is lower.

In contrast, the Weighted Least Connection algorithm produces a more

proportional workload distribution based on server capacity. Under low traffic

conditions, higher-capacity servers receive the largest share of requests at

approximately 4.83%, and this pattern remains consistent under medium and high

loads, ranging from approximately 5.25% to 5.38%. This behavior aligns with the

algorithm’s mechanism of normalizing active connections by server weight,

ensuring that higher-capacity servers handle more requests while maintaining a

balanced connection-to-weight ratio.

Performa Platform

The performance evaluation of Amazon Web Services (AWS) and Google

Cloud Platform (GCP) in this study is not intended to determine which platform is

inherently superior, but rather to observe system performance characteristics based

on application testing results within each cloud environment. The evaluation

focuses on application-level performance indicators, represented by p95 latency

and throughput, which directly reflect the quality of service experienced by end

users. CPU utilization is included as a supporting parameter to provide insight into

system stability during the testing process. All experiments were conducted within

the same region, Singapore, to minimize the impact of inter-regional network

latency differences.

This approach was adopted because the study does not employ identical

virtual machine types across AWS and GCP, although the number of vCPUs was

aligned. As a result, resource utilization–based comparisons do not fully represent

direct platform performance, and the analysis therefore emphasizes application

performance behavior rather than raw infrastructure metrics.

Visualizations of the p95 latency results for AWS and GCP are presented in

graphical form in Figures 3 and 4.

Figure 1. Latency versus Traffic Level on AWS

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 12

Figure 4. Latency versus Traffic Level on GCP

Based on the p95 latency graphs for AWS and GCP shown in Figures 3 and

4, both platforms exhibit relatively stable response patterns across all load levels.

On AWS, p95 latency values remain consistent across algorithms, with only minor

fluctuations as the workload increases. This condition indicates that the AWS

instances used are still able to efficiently handle increasing workloads, such that

changes in load balancing algorithms do not result in significant variations in

response time.

In contrast, GCP shows slightly greater p95 latency variation under low load

conditions, particularly for the Least Response Time algorithm, which records

higher initial latency compared to the other algorithms. However, as the load

increases, latency values for all algorithms on GCP demonstrate a declining trend

and become more uniform under high load. This pattern indicates that increased

workload leads to more consistent resource utilization, thereby reducing disparities

in initial response times across algorithms.

Visualizations of throughput test results for the AWS and GCP platforms are

presented in graphical form in Figures 5 and 6.

Figure 5. Throughput versus Traffic Level on AWS

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

13 http://eduvest.greenvest.co.id

Figure 6. Throughput versus Traffic Level on GCP

Based on the throughput graphs shown in Figures 5 and 6, both AWS and

GCP are able to maintain linear throughput growth as the workload increases. No

throughput degradation is observed on either platform or for any algorithm,

indicating that backend processing capacity remains sufficient across all testing

scenarios. The similarity in throughput patterns suggests that differences in virtual

machine characteristics do not significantly affect the system’s aggregate request

processing capability, as long as the configuration and workload remain within the

capacity limits of the instances.

As a complementary aspect of platform performance analysis, CPU

utilization was also recorded during the testing process and is summarized in Table

6.

Table 6. Comparison of Average CPU Utilization on AWS and GCP

Platform Traffic Least

Connection

Weighted Least

Connection

Least Response

Time

AWS Low 13.89 13.49 14.53

 Medium 17.00 14.27 14.37

 High 17.20 15.50 19.47

GCP Low 27.33 24.69 26.70

 Medium 29.64 25.43 27.10

 High 31.64 29.40 28.81

CPU utilization on both AWS and GCP shows a consistent increasing trend

as the workload grows, without causing any system failures across all testing

scenarios. On AWS, CPU utilization values remain relatively lower, while on GCP

they tend to be higher at each traffic level. This difference reflects variations in

virtual machine characteristics and resource management mechanisms inherent to

each platform. Therefore, CPU utilization in this study is treated as a supporting

parameter to demonstrate system stability during testing rather than as a primary

metric for direct platform comparison.

CONCLUSION

After conducting a series of experiments, this study concludes by evaluating

the performance of dynamic load balancing algorithms—Least Connection,

Eduvest – Journal of Universal Studies

Volume 6 Number 1, January, 2026

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In

Heterogeneous Multi-Cloud Environments 14

Weighted Least Connection, and Least Response Time—in heterogeneous server

environments for microservices-based web applications deployed on Amazon

Web Services (AWS) and Google Cloud Platform (GCP). The experimental

results indicate that no single algorithm consistently outperforms the others across

all scenarios and platforms, as each algorithm exhibits distinct load distribution

characteristics and system response behaviors. Weighted Least Connection tends

to produce a more proportional workload distribution based on server capacity,

while Least Connection and Least Response Time are more influenced by the

number of active connections and initial response times.

At the platform level, performance comparison is not intended to determine

which cloud provider is inherently superior, given the differences in virtual

machine types used. Consequently, the evaluation focuses on application-level

performance metrics, namely p95 latency and throughput, which demonstrate that

both AWS and GCP are capable of maintaining service stability across all load

levels. These findings provide empirical insights into the behavior of dynamic

load balancing algorithms in heterogeneous, cross-platform cloud environments

and emphasize that the selection of algorithms and platforms should be aligned

with workload characteristics and the specific objectives of the target system.

Despite its contributions, this study is subject to limitations in terms of

testing scale and infrastructure configuration diversity. Therefore, future work is

recommended to explore larger-scale scenarios, including an increased number of

instances, more extreme workload patterns through stress testing, and the use of

virtual machine types with more standardized vCPU characteristics to further

enrich comparative performance analysis.

REFERENCES

Abraham, I., & Supriyati, Y. (2022). Desain kuasi eksperimen dalam pendidikan: Literatur

review. Jurnal Ilmiah Mandala Education (JIME), 8(3).

https://doi.org/10.36312/jime.v8i3.3800

Akerele, J. I., Uzoka, A., Ojukwu, P. U., & Olamijuwon, O. J. (2024). Optimizing traffic

management for public services during high-demand periods using cloud load

balancers. Computer Science & IT Research Journal, 5(11), 2594–2608.

https://doi.org/10.51594/csitrj.v5i11.1710

Alkhatib, A., Alsabbagh, A., Maraqa, R., & AlZu'bi, S. (2021). Load balancing techniques

in cloud computing: Extensive review. Advances in Science, Technology and

Engineering Systems Journal, 6(2), 860–870. https://doi.org/10.25046/aj060299

Ariestiandy, D., Suhery, L., Jusmawati, & Yanuardi. (2023). Evaluasi load balancing: Studi

komparatif least-connection dan round-robin dalam konteks cloud computing. Jurnal

Fasilkom, 13(3), 424–430. https://doi.org/10.37859/jf.v13i3.6236

Arifin, S., Nugraha, A. W., Mukti, F. S., & Jatmika, S. (2024). MQTT broker optimization:

Comparative analysis of round robin and least response time. Jurnal Nasional Teknik

Elektro, 13(3), 127–136. https://doi.org/10.25077/jnte.v13n3.1260.2024

Fawwazi, M. M., Putra, E., & Putri, N. A. (2025). Evaluation and comparison of load

balancing algorithm performance in the implementation of weighted least

connections and round robin in cloud computing environment. Journal of Computer

Eduvest – Journal of Universal Studies

Volume 6, Number 1, January, 2026

15 http://eduvest.greenvest.co.id

Science, Information Technology and Telecommunication Engineering

(JCoSITTE), 6(1), 741–747. https://doi.org/10.30596/jcositte.v6i1.21731

G A, A., & Pawar, R. (2024). Optimizing cloud application performance: A survey on load

balancing techniques. International Journal of Scientific Research in Engineering

and Management, 8(5), 1–5. https://doi.org/10.55041/ijsrem34983

Herdiansyah, R. N., Iqbal, M., & Aulia, S. (2025). Perbandingan performa load balancing

pada web server di Microsoft Azure menggunakan algoritma least connection dan

round robin. e-Proceeding of Applied Science, 11(4), 1037. Fakultas Ilmu Terapan,

Universitas Telkom

Kaviarasan, R., Balamurugan, G., Kalaiyarasan, R., & Reddy, Y. V. R. (2023). Effective

load balancing approach in cloud computing using inspired lion optimization

algorithm. e-Prime – Advances in Electrical Engineering, Electronics and Energy, 6,

100326. https://doi.org/10.1016/j.prime.2023.100326

Kumar, P. R., Rajagopalan, S., & Charles, J. C. P. (2023). Lightweight native edge load

balancers for edge load balancing. Global Journal of Information Systems and

Applications, 3(1), 48–55. https://doi.org/10.53623/gisa.v3i1.256

Maurya, S. K., & Sinha, G. (2022). Load balancing in cloud computing: An analytical

review and proposal. Indonesian Journal of Electrical Engineering and Computer

Science, 26(3), 1530–1537. https://doi.org/10.11591/ijeecs.v26.i3.pp1530-1537

Open Source Initiative. (2024). The MIT License. https://opensource.org/license/MIT

Oyediran, M. O., Ojo, O. S., Ajagbe, S. A., Aiyeniko, O., Obuzor, P. C., & Adigun, M. O.

(2024). Comprehensive review of load balancing in cloud computing system.

International Journal of Electrical and Computer Engineering, 14(3), 3244–3255.

https://doi.org/10.11591/ijece.v14i3.pp3244-3255

Rahman, S. A., & Hadiwandra, T. Y. (2023). Perbandingan algoritma weighted least

connection dan weighted round robin pada load balancing berbasis Docker Swarm.

Jurnal Inovtek Polbeng – Seri Informatika, 8(2).

Riskiono, S. D., & Pasha, D. (2020). Analisis metode load balancing dalam meningkatkan

kinerja website e-learning. Jurnal Teknoinfo, 14(1), 22–26.

https://doi.org/10.33365/jti.v14i1.466

Shafiq, D. A., Jhanjhi, N. Z., & Abdullah, A. (2021). Load balancing techniques in cloud

computing environment: A review. Journal of King Saud University – Computer and

Information Sciences, 33(9), 1129–1141.

https://doi.org/10.1016/j.jksuci.2021.02.007

Sharma, V., & Sharma, H. C. (2021). A review of cloud computing scheduling algorithms.

International Journal of Innovative Science and Research Technology, 6(12).

Sinlae, A. A. J., Bagir, M., & Prayitno, M. H. (2022). Analisis perbandingan algoritma

round-robin dengan least-connection terhadap peningkatan throughput layanan web

server. JURIKOM (Jurnal Riset Komputer), 9(5), 1584–1591.

https://doi.org/10.30865/jurikom.v9i5.4995

Trivedi, D., Parmar, N., & Rahevar, M. (2023). Methodological assessment of various

algorithm types for load balancing in cloud computing. In S. Awasthi et al. (Eds.),

Sustainable computing: Transforming Industry 4.0 to Society 5.0 (pp. 269–277).

Springer. https://doi.org/10.1007/978-3-031-13577-4_16

Vithanage, K. (2018). Web-based microservice architecture example [Computer software].

GitHub. https://github.com/kasvith/simple-microservice-example

