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ABSTRACT 

Microservices-based application architectures in cloud environments require load 

balancing mechanisms that can adapt to differences in server capacity and workload 

fluctuations. This study aims to evaluate the performance of dynamic load balancing 

algorithms—Least Connection, Weighted Least Connection, and Least Response Time—in 

heterogeneous server environments using Amazon Web Services (AWS) and Google Cloud 

Platform (GCP). The evaluation was conducted through staged testing by observing 

application performance based on p95 latency, throughput, error rate, and load distribution 

patterns. The results indicate that no single algorithm consistently outperforms the others 

across all scenarios and platforms. Weighted Least Connection tends to produce a more 

proportional load distribution according to server capacity, while Least Connection and 

Least Response Time are more influenced by the number of active connections and initial 

response time. Overall, both AWS and GCP are able to maintain application performance 

stability across all load levels. These findings confirm that the effectiveness of dynamic load 

balancing algorithms in heterogeneous cloud environments is influenced by workload 

characteristics and server capacity, indicating that algorithm selection should be tailored 

to the specific system objectives. 

KEYWORDS Load balancing Dynamic, Heterogen, Least Connection, Weighted Least 

Connection, Least Response Time, AWS, GCP. 
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INTRODUCTION 

The rapid advancement of information technology has brought significant 

transformations to modern computing systems, enabling the delivery of services 

that are faster, more efficient, and more reliable. Dependence on digital services 

continues to increase, making the need for server infrastructures that can ensure 

high availability and low latency increasingly critical. Dynamically fluctuating user 

demand often creates bottlenecks on specific servers, which may lead to overload 

conditions, delayed responses, and even operational service disruptions (Akerele et 

al., 2024). Consequently, load balancing mechanisms have become an essential 

strategy for maintaining system stability and consistent performance (G A & Pawar, 

2024; Riskiono & Pasha, 2020). The implementation of effective load balancing 

strategies allows systems to sustain optimal performance despite high demand 
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fluctuations and unstable traffic conditions, while also ensuring service continuity 

and improving the efficiency of computing resource utilization (Shafiq et al., 2021). 

Load balancing refers to the distribution of workloads evenly among multiple 

servers in order to increase throughput and reduce latency (Kaviarasan et al., 2023). 

In practice, incoming requests are allocated to available servers and resources, with 

the allocation process governed by specific algorithms. These algorithms are 

generally classified into two main categories: static and dynamic load balancing, 

each employing different approaches to achieve optimal load distribution (Trivedi 

et al., 2023). Static load balancing algorithms distribute workloads without 

considering the current condition of servers, whereas dynamic algorithms adjust 

resource allocation based on real-time server status, such as the number of active 

connections, memory usage, and CPU utilization (Oyediran et al., 2024). Both 

approaches possess distinct characteristics and advantages, depending on workload 

uniformity and the availability of system resources (Kumar et al., 2023). 

Dynamic load balancing algorithms have proven to be more suitable for 

heterogeneous environments, as they can adapt load distribution based on real-time 

server conditions, resulting in higher performance and accuracy compared to static 

algorithms (Maurya & Sinha, 2022; Sharma & Sharma, 2021). In contrast, static 

algorithms perform optimally in homogeneous environments where workloads are 

predictable and execution times are stable, with uniform configurations across all 

machines. Examples of dynamic algorithms include Least Connection, Weighted 

Least Connection, and Least Response Time. Least Connection directs new 

requests to the server with the fewest active connections, while Least Response 

Time routes requests to the server with the fastest response time combined with the 

lowest connection load at a given moment. Meanwhile, Weighted Least Connection 

distributes workloads by taking into account predefined processing capacities 

assigned to each server (Rahman & Hadiwandra, 2023; Fawwazi et al., 2025; Arifin 

et al., 2024). These dynamic approaches are more effective in heterogeneous 

systems due to their flexibility in accommodating differences in resource capacity. 

Several studies have explored the effectiveness of load balancing algorithms 

in handling high server workloads. Sinlae et al. (2022) compared the Round Robin 

and Least Connection algorithms to evaluate throughput across different demand 

levels, demonstrating that Least Connection is more efficient under initial load 

conditions due to more balanced connection distribution, although its performance 

declines as the load increases. Ariestiandy et al. (2023) conducted a comparison of 

the same algorithms in a clustered server architecture within a cloud computing 

environment and found that variations in connection levels significantly affect 

average response time, with Least Connection providing more stable responses than 

Round Robin. Furthermore, Herdiansyah et al. (2025) evaluated the performance 

of Least Connection and Round Robin algorithms on a Microsoft Azure–based web 

server using response time, throughput, and connection stability as performance 

metrics. Their results indicated that Least Connection performs better under 
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moderate to high workloads due to its ability to dynamically adjust load 

distribution, while Round Robin performs more effectively under low workloads 

by distributing requests evenly without considering server conditions. These 

foundational studies are essential for understanding the efficiency limits and 

performance characteristics of each algorithm before applying them to more 

complex scenarios, such as heterogeneous environments or the use of advanced 

dynamic algorithms (Alkhatib et al., 2021). 

Despite extensive prior research, several limitations remain in existing load 

balancing studies. Some research has not clearly classified load balancing 

algorithms into static and dynamic categories or used such classifications as a basis 

for algorithm selection, resulting in comparative outcomes that do not fully reflect 

algorithm characteristics or behavior under the tested system conditions. 

Additionally, several studies restrict their evaluations to a single cloud computing 

platform, limiting the generalizability of findings across cloud environments with 

differing infrastructure characteristics. 

Based on these gaps, this study focuses on a comparative analysis of dynamic 

load balancing algorithms—Least Connection, Weighted Least Connection, and 

Least Response Time—implemented on a microservices-based web application 

deployed in a heterogeneous server environment. Experiments are conducted on 

two major cloud computing platforms, Amazon Web Services (AWS) and Google 

Cloud Platform (GCP), to evaluate system performance using throughput, latency, 

error rate, and load distribution as key performance metrics. 

 

RESEARCH METHOD 

This study adopts a quantitative approach using a quasi-experimental method 

to evaluate the performance of dynamic load balancing algorithms in a 

microservices-based web application deployed in a heterogeneous server 

environment. The experiments are conducted on two cloud computing platforms, 

namely Amazon Web Services (AWS) and Google Cloud Platform (GCP), 

employing a non-equivalent group design due to differences in infrastructure 

characteristics across the platforms. To maintain result comparability, traffic load 

parameters and application configurations are consistently controlled, although the 

specifications of the virtual machines are not entirely identical (Abraham & 

Supriyati, 2022). 

The research workflow illustrating the experimental stages and data analysis 

process is presented in Figure 1. 
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Figure 1. Research Flow Diagram  

Literature Review 

At the literature review stage, the researchers examined theories, methods, 

and findings from previous studies related to dynamic load balancing algorithms, 

microservices-based web application architectures, and performance evaluation in 

cloud computing environments. The literature review served as a foundation for 

determining the research approach, selecting appropriate algorithms, and 

formulating relevant evaluation metrics. 

Experimental Design 

The experimental design stage focused on developing testing scenarios that 

include variations in load balancing algorithms, traffic load levels, and performance 

evaluation parameters. This design aims to ensure that the experiments accurately 

represent system conditions in a controlled and consistent manner across both tested 

platforms. 

System Design and Implementation 

The system design and implementation stage involves constructing the 

architecture and deploying the testing environment for a microservices-based web 

application on two cloud platforms, namely AWS and GCP. The test environment 

consists of a single load balancer node and multiple backend servers with varying 

resource configurations to represent heterogeneous server conditions, as detailed in 

Tables 1 and 2. The operating system used is Ubuntu 22.04 LTS (Jammy Jellyfish), 

selected for its ease of installation and maintenance, as well as its broad 

compatibility with cloud computing hardware on both AWS and GCP. All instances 

are deployed within the same region to minimize the impact of geographical 

latency, while differences in cloud platform characteristics remain a key aspect of 

the analysis. 
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Table 1. Heterogeneous Server Specifications on AWS 

Server Machine 

Type 

RAM 

(GiB) 

Virtual 

CPU 

Storage Region 

AWS-Server-1 T3 micro 1 2 10 GiB SSD (gp3, 

3000 IOPS default) 

AP-

Southeast-1 

AWS-Server-2 T3 small 2 2 10 GiB SSD (gp3, 

3000 IOPS default) 

AP-

Southeast-1 

AWS-Server-3 T3 medium 4 2 10 GiB SSD (gp3, 

3000 IOPS default) 

AP-

Southeast-1 

AWS 

LoadBalancer 

T3 micro 1 2 10 GiB SSD (gp3, 

3000 IOPS default) 

AP-

Southeast-1 

 

Table 2. Heterogeneous Server Specifications on GCP 

Server Machine 

Type 

RAM 

(GiB) 

Virtual 

CPU 

Storage Region 

gcp-Server-1 e2-cutom-

2-1024 

1 2 10 GB SSD 

(Balanced 

Persistent 

Disk) 

Asia-Southeast-1 

gcp-Server-2 e2-custom 

2-2048 

2 2 10 GB SSD 

(Balanced 

Persistent 

Disk) 

Asia-Southeast-1 

gcp-Server-3 e2-custom 

2-4096 

4 2 10 GB SSD 

(Balanced 

Persistent 

Disk) 

Asia-Southeast-1 

gcpLoadBalancer e2-

custom-2-

1024 

1 2 10 GB SSD 

(Balanced 

Persistent 

Disk) 

Asia-Southeast-1 

 

The microservices-based web application was implemented using publicly 

available source code obtained from a GitHub repository licensed under the MIT 

License (Vithanage, 2018). This license grants permission for use, modification, 

and distribution for academic purposes, provided that proper attribution is given to 

the original developer (Open Source Initiative, 2024). The application was 

deployed using a container-based architecture by leveraging Docker and Docker 

Compose to simplify service management and orchestration. The application was 

executed without modifying its core functional structure; only network 

configurations and IP addressing were adjusted to meet the requirements of cloud-

based testing environments. 

Nginx Plus was employed as a load balancer (reverse proxy) with the 

implementation of dynamic load balancing algorithms, namely Least Connection, 

Weighted Least Connection, and Least Response Time, to distribute incoming 

requests across backend servers with heterogeneous resource characteristics. Nginx 

Plus was consistently deployed on both AWS and GCP by downloading the license 

package from a temporary IAM-protected repository, installing the official 
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packages, and verifying the service. The service achieved an active (running) status 

on both platforms, indicating successful installation and license validation. 

Load distribution across backend servers was monitored using Netdata, with 

CPU utilization serving as the primary observation parameter. In addition, 

supporting metrics such as platform-level CPU utilization were obtained through 

the native monitoring services of each cloud provider, namely Amazon 

CloudWatch and Google Cloud Monitoring. Figure 2 presents an overview of the 

system implementation architecture and the testing scenarios applied in this study. 

 
Figure 2. Diagram System 

Testing 

The performance evaluation of the load balancing algorithms was conducted 

through load simulation using Apache JMeter, which executed HTTP GET requests 

to the frontend to ensure that testing variables remained controlled. The evaluated 

aspects included latency, throughput, error rate, and load distribution across servers, 

with real-time CPU monitoring performed using Netdata and the native cloud 

monitoring tools, namely Amazon CloudWatch and Google Cloud Monitoring. 

CPU utilization values were used as indicators of server load conditions and served 

as the basis for assessing load distribution throughout the testing process. 

The testing scenarios are presented in Table 3, which outlines the load 

parameters based on varying traffic levels. These scenarios were designed with 

consideration of each server’s capacity to prevent overload conditions on any 

individual server during testing, thereby ensuring reliable evaluation of system 

performance and load balancing effectiveness. 

Table 3. User Load Testing Scenarios 

Scenario Number of Threads 

(users) 

Ramp-Up Period 

(sec) 

Loop 

Count 

Total 

request 

Low  50 20 20 1000 

Medium  200 20 20 4000 

High 500 20 20 10000 
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Data Analysis and Conclusion 

Each testing scenario on both platforms and for each load balancing algorithm 

was executed with five repetitions to ensure result consistency and reliability. The 

reported values represent the average of these five runs to minimize transient 

variations and to ensure that the data accurately reflect the stable performance of 

each algorithm. System analysis was conducted by comparing latency, throughput, 

error rate, load distribution, and average CPU utilization across all scenarios. These 

results serve as the basis for evaluating the effectiveness of the load balancing 

algorithms as well as for comparing platform performance under equivalent testing 

conditions.  

 

RESULT AND DISCUSSION 

This section presents the experimental results and performance analysis of the 

load balancing algorithms implemented in heterogeneous server environments 

across the evaluated platforms. The experiments were conducted to assess the 

effectiveness of each algorithm in distributing request workloads, maintaining 

system performance stability, and ensuring resource efficiency under varying load 

levels, namely low, medium, and high. The primary evaluation metrics include 

throughput (RPS), latency with a focus on the 95th percentile, error rate (%), and 

load distribution among servers. 

The discussion of experimental results is divided into two main sections based 

on the cloud platform. The first section examines the performance of the algorithms 

in the AWS environment, while the second section discusses the results obtained in 

the GCP environment. In addition to the primary metrics, CPU utilization is 

included as a supporting indicator of resource efficiency. However, CPU usage is 

not used as the primary metric for cross-platform comparison because the two cloud 

environments differ in machine types, architectures, and default configurations that 

cannot be fully standardized. Therefore, the comparative analysis across platforms 

focuses on latency and throughput, while CPU utilization data are presented as 

supplementary information to provide insights into computational load trends 

during the experiments. 

Each testing scenario on both platforms was executed with five repetitions to 

ensure result consistency and reliability. The values reported in Tables 4 and 5 

represent the average of these five runs to reduce transient variations and to ensure 

that the data accurately reflect the stable performance of each algorithm. The 

repeated trials exhibited minimal variation across runs, indicating that the final 

values reliably represent actual system conditions on each platform rather than 

anomalies from single executions. This approach ensures that the interpretation of 

algorithm effectiveness is based on metrics validated through repeated 

measurements. 

Performance Analysis of Load Balancing Algorithms on AWS 
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The experimental results obtained in the AWS environment are presented in 

Table 4, which summarizes the throughput, latency (95th percentile), error rate, and 

load distribution for each load scenario. 

Table 4. Load Balancing Algorithm Performance Results on AWS 

Load 

Balancer 

Algorithm 

Traffic Throughput 

(kb/sec) 

Avg 

Latency 

(ms) 

Error 

Rate 

(%) 

Load Distribution (%) 

Server 

1 

Server 

2 

Server 

3 

Least 

Connection 

Low 49,86 49,60 0 1,80 1,50 2,11 

Medium 195,58 49,40 0 2,53 1,84 2,04 

High 489,24 48,80 0 5,71 2,80 3,83 

Weighted 

Least 

Connection 

Low 49,70 56,80 0 1,01 1,60 2,69 

Medium 194,68 50,20 0 1,62 2,32 3,62 

High 486,72 48,80 0 2,65 3,58 4,97 

Least 

Response 

Time 

Low 49,68 51,80 0 2,20 1,50 1,33 

Medium 195,76 50,60 0 1,86 2,13 2,29 

High 486,72 48,80 0 2,94 1,94 2,85 

 

Testing in the AWS environment demonstrates consistent system behavior 

across all load balancing algorithms, particularly in terms of scalability and 

performance stability. Across the three load levels, throughput increases linearly 

with the number of incoming requests, reaching approximately 49 kb/sec under low 

load, increasing to around 195 kb/sec under medium load, and approaching 490 

kb/sec under high load. This linear growth pattern indicates that the heterogeneous 

server architecture is able to maintain good performance scalability. No throughput 

degradation is observed for any of the algorithms, suggesting that all three load 

balancing mechanisms operate stably despite differences in server capacity. 

The p95 latency metric is used to represent response quality under worst-case 

conditions experienced by the majority of requests and is considered more 

representative than average latency alone. The experimental results show that p95 

latency remains within the range of 48–56 ms for all algorithms and load levels. 

Weighted Least Connection records the highest latency under low traffic conditions 

(56.80 ms), which decreases to 48.80 ms as the load increases. In contrast, Least 

Connection and Least Response Time maintain nearly identical latency values in 

the range of 48.80–51.80 ms, indicating more consistent response behavior. These 

latency patterns are influenced by how each algorithm utilizes heterogeneous 

resources. For Weighted Least Connection, higher initial latency occurs because 

high-weight servers are not yet fully utilized under low load; however, as traffic 

increases, the algorithm effectively leverages the capacity of larger servers, 

resulting in lower latency. Conversely, Least Connection and Least Response Time 

exhibit nearly identical latency values, indicating that although these algorithms do 

not account for server capacity, the applied workload remains within instance limits 

and does not trigger significant latency increases. 

Error rate serves as a key indicator of system reliability, and all algorithms 

achieve a 0% error rate across all testing scenarios. The absence of failed requests 

indicates that the system operates within a safe processing capacity, preventing 



Eduvest – Journal of Universal Studies 

Volume 6, Number 1, January, 2026  

9   http://eduvest.greenvest.co.id 

 

overload conditions or packet loss during request handling. This outcome is 

supported by workload levels that remain within instance capabilities and by load 

distribution decisions that prevent any single server from becoming excessively 

burdened. 

The most pronounced differences among the algorithms appear in the load 

distribution parameter. Under the Least Connection algorithm, the load distribution 

pattern shows a tendency to select lower-capacity servers more frequently than 

higher-capacity ones. In high-traffic scenarios, smaller servers handle 5.71% of 

requests, while larger servers receive only 2.80%. This pattern occurs because Least 

Connection prioritizes servers with fewer active connections, without considering 

their processing capacity. A similar pattern is observed in the Least Response Time 

algorithm, where smaller servers handle 2.94% of the workload under high traffic, 

indicating that Least Response Time is more influenced by faster initial response 

times than by actual server capacity. This behavior may lead to bottlenecks on 

smaller servers, particularly in large-scale scenarios. 

In contrast, the Weighted Least Connection algorithm does not exhibit these 

issues. Across all traffic levels, it distributes workloads more proportionally 

according to each server’s capacity. This is reflected in a more balanced load 

distribution, where higher-capacity servers receive a slightly larger share of the 

workload while remaining within controlled limits. This behavior occurs because 

Weighted Least Connection normalizes the number of active connections based on 

each server’s assigned weight, ensuring that even though larger servers handle more 

connections, the connection-to-weight ratio remains low. As a result, higher-

capacity servers absorb greater workloads in a controlled manner, while lower-

capacity servers are protected from overload. 

 

Performance Analysis of Load Balancing Algorithms on GCP 

The experimental results obtained in the GCP environment are presented in 

Table 5, which summarizes throughput, latency (95th percentile), error rate, and 

load distribution across all load scenarios. 

Table 5. Load Balancing Algorithm Performance Results on GCP 

Load 

Balancer 

Algorithm 

Traffic Throughput 

(kb/sec) 

Avg 

Latency 

(ms) 

Error 

Rate 

(%) 

Load Distribution (%) 

Server 

1 

Server 

2 

Server 

3 

Least 

Connection 

Low 49,56 54,20 0 3,20 2,93 2,61 

Medium 195,90 52,20 0 3,61 3,22 2,52 

High 487,90 46,20 0 4,78 5,68 2,63 

Weighted 

Least 

Connection 

Low 49,64 51,20 0 2,89 3,03 4,83 

Medium 195,28 47,80 0 2,09 3,43 5,25 

High 487,66 47,20 0 3,70 4,35 5,38 

Least 

Response 

Time 

Low 49,24 56,20 0 3,60 4,45 2,56 

Medium 196,20 50,80 0 4,62 3,12 3,15 

High 487,82 47,20 0 3,36 3,43 2,93 
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Testing in the GCP environment demonstrates consistent system performance 

patterns across all load balancing algorithms, with stable throughput increases 

observed at each load level. Throughput for all algorithms increases linearly as 

request volume grows, from approximately 49 kb/sec under low load, to around 195 

kb/sec under medium load, and approaching 488 kb/sec under high load. The 

consistency of this pattern indicates that the server architecture is capable of 

maintaining performance scalability without degradation for any algorithm. This 

behavior further suggests that workloads are effectively distributed, preventing 

processing capacity degradation despite increasing request volumes. 

In terms of p95 latency, all algorithms also exhibit relatively stable behavior, 

although the differences are more pronounced than those observed in the AWS 

environment. All three algorithms demonstrate similar latency reduction trends as 

load increases. Least Connection records a latency of approximately 54 ms under 

low load, which decreases under medium load and reaches around 46 ms under high 

load. Weighted Least Connection follows a similar trend, decreasing from 

approximately 51 ms under low load to around 47 ms under high load. Meanwhile, 

Least Response Time produces the highest latency under low load at approximately 

56 ms, then declines to around 50 ms under medium load and stabilizes at 

approximately 47 ms under high load. This decreasing latency trend is driven by 

increasingly stable workload characteristics as traffic increases. Under low load, 

performance disparities among servers are more pronounced, making algorithms 

sensitive to initial metrics—such as Least Response Time—which results in higher 

initial latency. As the load increases, all servers are forced to operate more 

consistently, reducing response time variability and leading to lower latency values. 

All algorithms again record an error rate of 0% across all load levels, 

indicating stable system reliability under all testing scenarios. The absence of failed 

requests confirms that the load distributions generated by each algorithm remain 

within server capacity limits and that the distribution decisions effectively prevent 

overload conditions on any individual server. 

Differences in algorithm characteristics are most evident in the load 

distribution parameter. Under the Least Connection algorithm, the load distribution 

pattern shows a tendency that is not fully proportional to server capacity. Lower-

capacity servers continue to receive a relatively larger share of the workload, 

accounting for approximately 3.20% under low load and increasing to 4.78% under 

high load, while higher-capacity servers receive smaller portions in certain 

scenarios. This pattern arises because Least Connection considers only the number 

of active connections without accounting for server processing capacity. 

A similar pattern is observed with the Least Response Time algorithm, where 

smaller servers handle approximately 3.60% of the workload under low traffic and 

continue to receive comparable shares under medium and high load, at 

approximately 4.62% and 3.36%, respectively. This behavior indicates that the 
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algorithm prioritizes faster initial response times, even when computational 

capacity is lower. 

In contrast, the Weighted Least Connection algorithm produces a more 

proportional workload distribution based on server capacity. Under low traffic 

conditions, higher-capacity servers receive the largest share of requests at 

approximately 4.83%, and this pattern remains consistent under medium and high 

loads, ranging from approximately 5.25% to 5.38%. This behavior aligns with the 

algorithm’s mechanism of normalizing active connections by server weight, 

ensuring that higher-capacity servers handle more requests while maintaining a 

balanced connection-to-weight ratio. 

Performa Platform 

The performance evaluation of Amazon Web Services (AWS) and Google 

Cloud Platform (GCP) in this study is not intended to determine which platform is 

inherently superior, but rather to observe system performance characteristics based 

on application testing results within each cloud environment. The evaluation 

focuses on application-level performance indicators, represented by p95 latency 

and throughput, which directly reflect the quality of service experienced by end 

users. CPU utilization is included as a supporting parameter to provide insight into 

system stability during the testing process. All experiments were conducted within 

the same region, Singapore, to minimize the impact of inter-regional network 

latency differences. 

This approach was adopted because the study does not employ identical 

virtual machine types across AWS and GCP, although the number of vCPUs was 

aligned. As a result, resource utilization–based comparisons do not fully represent 

direct platform performance, and the analysis therefore emphasizes application 

performance behavior rather than raw infrastructure metrics. 

Visualizations of the p95 latency results for AWS and GCP are presented in 

graphical form in Figures 3 and 4. 

 
Figure 1. Latency versus Traffic Level on AWS  
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Figure 4. Latency versus Traffic Level on GCP 

Based on the p95 latency graphs for AWS and GCP shown in Figures 3 and 

4, both platforms exhibit relatively stable response patterns across all load levels. 

On AWS, p95 latency values remain consistent across algorithms, with only minor 

fluctuations as the workload increases. This condition indicates that the AWS 

instances used are still able to efficiently handle increasing workloads, such that 

changes in load balancing algorithms do not result in significant variations in 

response time. 

In contrast, GCP shows slightly greater p95 latency variation under low load 

conditions, particularly for the Least Response Time algorithm, which records 

higher initial latency compared to the other algorithms. However, as the load 

increases, latency values for all algorithms on GCP demonstrate a declining trend 

and become more uniform under high load. This pattern indicates that increased 

workload leads to more consistent resource utilization, thereby reducing disparities 

in initial response times across algorithms. 

Visualizations of throughput test results for the AWS and GCP platforms are 

presented in graphical form in Figures 5 and 6. 

 
Figure 5. Throughput versus Traffic Level on AWS 
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Figure 6. Throughput versus Traffic Level on GCP 

Based on the throughput graphs shown in Figures 5 and 6, both AWS and 

GCP are able to maintain linear throughput growth as the workload increases. No 

throughput degradation is observed on either platform or for any algorithm, 

indicating that backend processing capacity remains sufficient across all testing 

scenarios. The similarity in throughput patterns suggests that differences in virtual 

machine characteristics do not significantly affect the system’s aggregate request 

processing capability, as long as the configuration and workload remain within the 

capacity limits of the instances. 

As a complementary aspect of platform performance analysis, CPU 

utilization was also recorded during the testing process and is summarized in Table 

6. 

Table 6. Comparison of Average CPU Utilization on AWS and GCP 

Platform Traffic Least 

Connection 

Weighted Least 

Connection 

Least Response 

Time 

AWS Low 13.89 13.49 14.53 

 Medium 17.00 14.27 14.37 

 High 17.20 15.50 19.47 

GCP Low 27.33 24.69 26.70 

 Medium 29.64 25.43 27.10 

 High 31.64 29.40 28.81 

CPU utilization on both AWS and GCP shows a consistent increasing trend 

as the workload grows, without causing any system failures across all testing 

scenarios. On AWS, CPU utilization values remain relatively lower, while on GCP 

they tend to be higher at each traffic level. This difference reflects variations in 

virtual machine characteristics and resource management mechanisms inherent to 

each platform. Therefore, CPU utilization in this study is treated as a supporting 

parameter to demonstrate system stability during testing rather than as a primary 

metric for direct platform comparison. 

 

CONCLUSION 

After conducting a series of experiments, this study concludes by evaluating 

the performance of dynamic load balancing algorithms—Least Connection, 
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Weighted Least Connection, and Least Response Time—in heterogeneous server 

environments for microservices-based web applications deployed on Amazon 

Web Services (AWS) and Google Cloud Platform (GCP). The experimental 

results indicate that no single algorithm consistently outperforms the others across 

all scenarios and platforms, as each algorithm exhibits distinct load distribution 

characteristics and system response behaviors. Weighted Least Connection tends 

to produce a more proportional workload distribution based on server capacity, 

while Least Connection and Least Response Time are more influenced by the 

number of active connections and initial response times. 

At the platform level, performance comparison is not intended to determine 

which cloud provider is inherently superior, given the differences in virtual 

machine types used. Consequently, the evaluation focuses on application-level 

performance metrics, namely p95 latency and throughput, which demonstrate that 

both AWS and GCP are capable of maintaining service stability across all load 

levels. These findings provide empirical insights into the behavior of dynamic 

load balancing algorithms in heterogeneous, cross-platform cloud environments 

and emphasize that the selection of algorithms and platforms should be aligned 

with workload characteristics and the specific objectives of the target system. 

Despite its contributions, this study is subject to limitations in terms of 

testing scale and infrastructure configuration diversity. Therefore, future work is 

recommended to explore larger-scale scenarios, including an increased number of 

instances, more extreme workload patterns through stress testing, and the use of 

virtual machine types with more standardized vCPU characteristics to further 

enrich comparative performance analysis. 
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