- Eduvest — Journal of Universal Studies
1 ed uvest Volume 6 Number 1, January, 2026
p- ISSN 2775-3735- e-ISSN 2775-3727

A Comparative Study of Dynamic Load Balancing Algorithms for
Microservices in Heterogeneous Multi-Cloud Environments

Domma Uli Sitinjak, Galura Muhammad Suranegara
Universitas Pendidikan Indonesia Kampus Purwakarta, Indonesia
Email: dommauli@upi.edu, galurams@upi.edu

ABSTRACT

Microservices-based application architectures in cloud environments require load
balancing mechanisms that can adapt to differences in server capacity and workload
fluctuations. This study aims to evaluate the performance of dynamic load balancing
algorithms—Least Connection, Weighted Least Connection, and Least Response Time—in
heterogeneous server environments using Amazon Web Services (AWS) and Google Cloud
Platform (GCP). The evaluation was conducted through staged testing by observing
application performance based on p95 latency, throughput, error rate, and load distribution
patterns. The results indicate that no single algorithm consistently outperforms the others
across all scenarios and platforms. Weighted Least Connection tends to produce a more
proportional load distribution according to server capacity, while Least Connection and
Least Response Time are more influenced by the number of active connections and initial
response time. Overall, both AWS and GCP are able to maintain application performance
stability across all load levels. These findings confirm that the effectiveness of dynamic load
balancing algorithms in heterogeneous cloud environments is influenced by workload
characteristics and server capacity, indicating that algorithm selection should be tailored
to the specific system objectives.

KEYWORDS Load balancing Dynamic, Heterogen, Least Connection, Weighted Least
Connection, Least Response Time, AWS, GCP.

@ ® @ This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International

INTRODUCTION

The rapid advancement of information technology has brought significant
transformations to modern computing systems, enabling the delivery of services
that are faster, more efficient, and more reliable. Dependence on digital services
continues to increase, making the need for server infrastructures that can ensure
high availability and low latency increasingly critical. Dynamically fluctuating user
demand often creates bottlenecks on specific servers, which may lead to overload
conditions, delayed responses, and even operational service disruptions (Akerele et
al., 2024). Consequently, load balancing mechanisms have become an essential
strategy for maintaining system stability and consistent performance (G A & Pawar,
2024; Riskiono & Pasha, 2020). The implementation of effective load balancing
strategies allows systems to sustain optimal performance despite high demand

1 http://eduvest.greenvest.co.id

http://sosains.greenvest.co.id/index.php/sosains
mailto:dommauli@upi.edu1
mailto:galurams@upi.edu2
https://creativecommons.org/licenses/by-sa/4.0/

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

fluctuations and unstable traffic conditions, while also ensuring service continuity
and improving the efficiency of computing resource utilization (Shafiq et al., 2021).

Load balancing refers to the distribution of workloads evenly among multiple
servers in order to increase throughput and reduce latency (Kaviarasan et al., 2023).
In practice, incoming requests are allocated to available servers and resources, with
the allocation process governed by specific algorithms. These algorithms are
generally classified into two main categories: static and dynamic load balancing,
each employing different approaches to achieve optimal load distribution (Trivedi
et al., 2023). Static load balancing algorithms distribute workloads without
considering the current condition of servers, whereas dynamic algorithms adjust
resource allocation based on real-time server status, such as the number of active
connections, memory usage, and CPU utilization (Oyediran et al., 2024). Both
approaches possess distinct characteristics and advantages, depending on workload
uniformity and the availability of system resources (Kumar et al., 2023).

Dynamic load balancing algorithms have proven to be more suitable for
heterogeneous environments, as they can adapt load distribution based on real-time
server conditions, resulting in higher performance and accuracy compared to static
algorithms (Maurya & Sinha, 2022; Sharma & Sharma, 2021). In contrast, static
algorithms perform optimally in homogeneous environments where workloads are
predictable and execution times are stable, with uniform configurations across all
machines. Examples of dynamic algorithms include Least Connection, Weighted
Least Connection, and Least Response Time. Least Connection directs new
requests to the server with the fewest active connections, while Least Response
Time routes requests to the server with the fastest response time combined with the
lowest connection load at a given moment. Meanwhile, Weighted Least Connection
distributes workloads by taking into account predefined processing capacities
assigned to each server (Rahman & Hadiwandra, 2023; Fawwazi et al., 2025; Arifin
et al.,, 2024). These dynamic approaches are more effective in heterogeneous
systems due to their flexibility in accommodating differences in resource capacity.

Several studies have explored the effectiveness of load balancing algorithms
in handling high server workloads. Sinlae et al. (2022) compared the Round Robin
and Least Connection algorithms to evaluate throughput across different demand
levels, demonstrating that Least Connection is more efficient under initial load
conditions due to more balanced connection distribution, although its performance
declines as the load increases. Ariestiandy et al. (2023) conducted a comparison of
the same algorithms in a clustered server architecture within a cloud computing
environment and found that variations in connection levels significantly affect
average response time, with Least Connection providing more stable responses than
Round Robin. Furthermore, Herdiansyah et al. (2025) evaluated the performance
of Least Connection and Round Robin algorithms on a Microsoft Azure—based web
server using response time, throughput, and connection stability as performance
metrics. Their results indicated that Least Connection performs better under

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 2

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

moderate to high workloads due to its ability to dynamically adjust load
distribution, while Round Robin performs more effectively under low workloads
by distributing requests evenly without considering server conditions. These
foundational studies are essential for understanding the efficiency limits and
performance characteristics of each algorithm before applying them to more
complex scenarios, such as heterogeneous environments or the use of advanced
dynamic algorithms (Alkhatib et al., 2021).

Despite extensive prior research, several limitations remain in existing load
balancing studies. Some research has not clearly classified load balancing
algorithms into static and dynamic categories or used such classifications as a basis
for algorithm selection, resulting in comparative outcomes that do not fully reflect
algorithm characteristics or behavior under the tested system conditions.
Additionally, several studies restrict their evaluations to a single cloud computing
platform, limiting the generalizability of findings across cloud environments with
differing infrastructure characteristics.

Based on these gaps, this study focuses on a comparative analysis of dynamic
load balancing algorithms—ILeast Connection, Weighted Least Connection, and
Least Response Time—implemented on a microservices-based web application
deployed in a heterogeneous server environment. Experiments are conducted on
two major cloud computing platforms, Amazon Web Services (AWS) and Google
Cloud Platform (GCP), to evaluate system performance using throughput, latency,
error rate, and load distribution as key performance metrics.

RESEARCH METHOD

This study adopts a quantitative approach using a quasi-experimental method
to evaluate the performance of dynamic load balancing algorithms in a
microservices-based web application deployed in a heterogeneous server
environment. The experiments are conducted on two cloud computing platforms,
namely Amazon Web Services (AWS) and Google Cloud Platform (GCP),
employing a non-equivalent group design due to differences in infrastructure
characteristics across the platforms. To maintain result comparability, traffic load
parameters and application configurations are consistently controlled, although the
specifications of the virtual machines are not entirely identical (Abraham &
Supriyati, 2022).

The research workflow illustrating the experimental stages and data analysis
process is presented in Figure 1.

3 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

Literature Review

¥
Experimental
Design
v

" No
System Design Validation of Results

Yes

System
Implementation

Testing

v

Data Analysis

Figure 1. Research Flow Diagram

Literature Review

At the literature review stage, the researchers examined theories, methods,
and findings from previous studies related to dynamic load balancing algorithms,
microservices-based web application architectures, and performance evaluation in
cloud computing environments. The literature review served as a foundation for
determining the research approach, selecting appropriate algorithms, and
formulating relevant evaluation metrics.
Experimental Design

The experimental design stage focused on developing testing scenarios that
include variations in load balancing algorithms, traffic load levels, and performance
evaluation parameters. This design aims to ensure that the experiments accurately
represent system conditions in a controlled and consistent manner across both tested
platforms.
System Design and Implementation

The system design and implementation stage involves constructing the
architecture and deploying the testing environment for a microservices-based web
application on two cloud platforms, namely AWS and GCP. The test environment
consists of a single load balancer node and multiple backend servers with varying
resource configurations to represent heterogeneous server conditions, as detailed in
Tables 1 and 2. The operating system used is Ubuntu 22.04 LTS (Jammy Jellyfish),
selected for its ease of installation and maintenance, as well as its broad
compatibility with cloud computing hardware on both AWS and GCP. All instances
are deployed within the same region to minimize the impact of geographical
latency, while differences in cloud platform characteristics remain a key aspect of
the analysis.

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 4

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

Table 1. Heterogeneous Server Specifications on AWS

Server Machine RAM Virtual Storage Region
Type (GiB) CPU

AWS-Server-1 T3 micro 1 2 10 GiB SSD (gp3, AP-
3000 IOPS default) Southeast-1

AWS-Server-2 T3 small 2 2 10 GiB SSD (gp3, AP-
3000 IOPS default) Southeast-1

AWS-Server-3 T3 medium 4 2 10 GiB SSD (gp3, AP-
3000 IOPS default) Southeast-1

AWS T3 micro 1 2 10 GiB SSD (gp3, AP-
LoadBalancer 3000 IOPS default) Southeast-1

Table 2. Heterogeneous Server Specifications on GCP

Server Machine RAM Virtual Storage Region
Type (GiB) CPU
gep-Server-1 e2-cutom- 1 2 10 GB SSD Asia-Southeast-1
2-1024 (Balanced
Persistent
Disk)
gep-Server-2 e2-custom 2 2 10 GB SSD Asia-Southeast-1
2-2048 (Balanced
Persistent
Disk)
gcp-Server-3 e2-custom 4 2 10 GB SSD Asia-Southeast-1
2-4096 (Balanced
Persistent
Disk)
gcpLoadBalancer e2- 1 2 10 GB SSD Asia-Southeast-1
custom-2- (Balanced
1024 Persistent
Disk)

The microservices-based web application was implemented using publicly
available source code obtained from a GitHub repository licensed under the MIT
License (Vithanage, 2018). This license grants permission for use, modification,
and distribution for academic purposes, provided that proper attribution is given to
the original developer (Open Source Initiative, 2024). The application was
deployed using a container-based architecture by leveraging Docker and Docker
Compose to simplify service management and orchestration. The application was
executed without modifying its core functional structure; only network
configurations and IP addressing were adjusted to meet the requirements of cloud-
based testing environments.

Nginx Plus was employed as a load balancer (reverse proxy) with the
implementation of dynamic load balancing algorithms, namely Least Connection,
Weighted Least Connection, and Least Response Time, to distribute incoming
requests across backend servers with heterogeneous resource characteristics. Nginx
Plus was consistently deployed on both AWS and GCP by downloading the license
package from a temporary [IAM-protected repository, installing the official

5 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

packages, and verifying the service. The service achieved an active (running) status
on both platforms, indicating successful installation and license validation.

Load distribution across backend servers was monitored using Netdata, with
CPU utilization serving as the primary observation parameter. In addition,
supporting metrics such as platform-level CPU utilization were obtained through
the native monitoring services of each cloud provider, namely Amazon
CloudWatch and Google Cloud Monitoring. Figure 2 presents an overview of the

system implementation architecture and the testing scenarios applied in this study.
GCP

NetData
Amazon

CloudWatch Monitoring

Load Balancer Load Balancer

I I

4 /4

Figure 2. Diagram System
Testing

The performance evaluation of the load balancing algorithms was conducted
through load simulation using Apache JMeter, which executed HTTP GET requests
to the frontend to ensure that testing variables remained controlled. The evaluated
aspects included latency, throughput, error rate, and load distribution across servers,
with real-time CPU monitoring performed using Netdata and the native cloud
monitoring tools, namely Amazon CloudWatch and Google Cloud Monitoring.
CPU utilization values were used as indicators of server load conditions and served
as the basis for assessing load distribution throughout the testing process.

The testing scenarios are presented in Table 3, which outlines the load
parameters based on varying traffic levels. These scenarios were designed with
consideration of each server’s capacity to prevent overload conditions on any
individual server during testing, thereby ensuring reliable evaluation of system
performance and load balancing effectiveness.

Table 3. User Load Testing Scenarios

Scenario Number of Threads Ramp-Up Period Loop Total
(users) (sec) Count request
Low 50 20 20 1000
Medium 200 20 20 4000
High 500 20 20 10000

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 6

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

Data Analysis and Conclusion

Each testing scenario on both platforms and for each load balancing algorithm
was executed with five repetitions to ensure result consistency and reliability. The
reported values represent the average of these five runs to minimize transient
variations and to ensure that the data accurately reflect the stable performance of
each algorithm. System analysis was conducted by comparing latency, throughput,
error rate, load distribution, and average CPU utilization across all scenarios. These
results serve as the basis for evaluating the effectiveness of the load balancing
algorithms as well as for comparing platform performance under equivalent testing
conditions.

RESULT AND DISCUSSION

This section presents the experimental results and performance analysis of the
load balancing algorithms implemented in heterogeneous server environments
across the evaluated platforms. The experiments were conducted to assess the
effectiveness of each algorithm in distributing request workloads, maintaining
system performance stability, and ensuring resource efficiency under varying load
levels, namely low, medium, and high. The primary evaluation metrics include
throughput (RPS), latency with a focus on the 95th percentile, error rate (%), and
load distribution among servers.

The discussion of experimental results is divided into two main sections based
on the cloud platform. The first section examines the performance of the algorithms
in the AWS environment, while the second section discusses the results obtained in
the GCP environment. In addition to the primary metrics, CPU utilization is
included as a supporting indicator of resource efficiency. However, CPU usage is
not used as the primary metric for cross-platform comparison because the two cloud
environments differ in machine types, architectures, and default configurations that
cannot be fully standardized. Therefore, the comparative analysis across platforms
focuses on latency and throughput, while CPU utilization data are presented as
supplementary information to provide insights into computational load trends
during the experiments.

Each testing scenario on both platforms was executed with five repetitions to
ensure result consistency and reliability. The values reported in Tables 4 and 5
represent the average of these five runs to reduce transient variations and to ensure
that the data accurately reflect the stable performance of each algorithm. The
repeated trials exhibited minimal variation across runs, indicating that the final
values reliably represent actual system conditions on each platform rather than
anomalies from single executions. This approach ensures that the interpretation of
algorithm effectiveness is based on metrics validated through repeated
measurements.

Performance Analysis of Load Balancing Algorithms on AWS

7 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

The experimental results obtained in the AWS environment are presented in
Table 4, which summarizes the throughput, latency (95th percentile), error rate, and
load distribution for each load scenario.

Table 4. Load Balancing Algorithm Performance Results on AWS

Load Traffic Throughput Avg Error Load Distribution (%)
Balancer (kb/sec) Latency Rate Server Server Server
Algorithm (ms) (%) 1 2 3

Least Low 49,86 49,60 0 1,80 1,50 2,11
Connection Medium 195,58 49,40 0 2,53 1,84 2,04
High 489,24 48,80 0 5,71 2,80 3,83

Weighted Low 49,70 56,80 0 1,01 1,60 2,69
Least Medium 194,68 50,20 0 1,62 2,32 3,62
Connection High 486,72 48,80 0 2,65 3,58 4,97
Least Low 49,68 51,80 0 2,20 1,50 1,33
Response Medium 195,76 50,60 0 1,86 2,13 2,29
Time High 486,72 48,80 0 2,94 1,94 2,85

Testing in the AWS environment demonstrates consistent system behavior
across all load balancing algorithms, particularly in terms of scalability and
performance stability. Across the three load levels, throughput increases linearly
with the number of incoming requests, reaching approximately 49 kb/sec under low
load, increasing to around 195 kb/sec under medium load, and approaching 490
kb/sec under high load. This linear growth pattern indicates that the heterogeneous
server architecture is able to maintain good performance scalability. No throughput
degradation is observed for any of the algorithms, suggesting that all three load
balancing mechanisms operate stably despite differences in server capacity.

The p95 latency metric is used to represent response quality under worst-case
conditions experienced by the majority of requests and is considered more
representative than average latency alone. The experimental results show that p95
latency remains within the range of 48—-56 ms for all algorithms and load levels.
Weighted Least Connection records the highest latency under low traffic conditions
(56.80 ms), which decreases to 48.80 ms as the load increases. In contrast, Least
Connection and Least Response Time maintain nearly identical latency values in
the range of 48.80—51.80 ms, indicating more consistent response behavior. These
latency patterns are influenced by how each algorithm utilizes heterogeneous
resources. For Weighted Least Connection, higher initial latency occurs because
high-weight servers are not yet fully utilized under low load; however, as traffic
increases, the algorithm effectively leverages the capacity of larger servers,
resulting in lower latency. Conversely, Least Connection and Least Response Time
exhibit nearly identical latency values, indicating that although these algorithms do
not account for server capacity, the applied workload remains within instance limits
and does not trigger significant latency increases.

Error rate serves as a key indicator of system reliability, and all algorithms
achieve a 0% error rate across all testing scenarios. The absence of failed requests
indicates that the system operates within a safe processing capacity, preventing

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 8

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

overload conditions or packet loss during request handling. This outcome is
supported by workload levels that remain within instance capabilities and by load
distribution decisions that prevent any single server from becoming excessively
burdened.

The most pronounced differences among the algorithms appear in the load
distribution parameter. Under the Least Connection algorithm, the load distribution
pattern shows a tendency to select lower-capacity servers more frequently than
higher-capacity ones. In high-traffic scenarios, smaller servers handle 5.71% of
requests, while larger servers receive only 2.80%. This pattern occurs because Least
Connection prioritizes servers with fewer active connections, without considering
their processing capacity. A similar pattern is observed in the Least Response Time
algorithm, where smaller servers handle 2.94% of the workload under high traffic,
indicating that Least Response Time is more influenced by faster initial response
times than by actual server capacity. This behavior may lead to bottlenecks on
smaller servers, particularly in large-scale scenarios.

In contrast, the Weighted Least Connection algorithm does not exhibit these
issues. Across all traffic levels, it distributes workloads more proportionally
according to each server’s capacity. This is reflected in a more balanced load
distribution, where higher-capacity servers receive a slightly larger share of the
workload while remaining within controlled limits. This behavior occurs because
Weighted Least Connection normalizes the number of active connections based on
each server’s assigned weight, ensuring that even though larger servers handle more
connections, the connection-to-weight ratio remains low. As a result, higher-
capacity servers absorb greater workloads in a controlled manner, while lower-
capacity servers are protected from overload.

Performance Analysis of Load Balancing Algorithms on GCP
The experimental results obtained in the GCP environment are presented in
Table 5, which summarizes throughput, latency (95th percentile), error rate, and
load distribution across all load scenarios.
Table 5. Load Balancing Algorithm Performance Results on GCP

Load Traffic Throughput Avg Error Load Distribution (%)
Balancer (kb/sec) Latency Rate Server Server Server
Algorithm (ms) (%) 1 2 3

Least Low 49,56 54,20 0 3,20 2,93 2,61
Connection Medium 195,90 52,20 0 3,61 3,22 2,52
High 487,90 46,20 0 4,78 5,68 2,63

Weighted Low 49,64 51,20 0 2,89 3,03 4,83
Least Medium 195,28 47,80 0 2,09 3,43 5,25
Connection High 487,66 47,20 0 3,70 4,35 5,38
Least Low 49,24 56,20 0 3,60 4,45 2,56
Response Medium 196,20 50,80 0 4,62 3,12 3,15
Time High 487,82 47,20 0 3,36 3,43 2,93

9 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

Testing in the GCP environment demonstrates consistent system performance
patterns across all load balancing algorithms, with stable throughput increases
observed at each load level. Throughput for all algorithms increases linearly as
request volume grows, from approximately 49 kb/sec under low load, to around 195
kb/sec under medium load, and approaching 488 kb/sec under high load. The
consistency of this pattern indicates that the server architecture is capable of
maintaining performance scalability without degradation for any algorithm. This
behavior further suggests that workloads are effectively distributed, preventing
processing capacity degradation despite increasing request volumes.

In terms of p95 latency, all algorithms also exhibit relatively stable behavior,
although the differences are more pronounced than those observed in the AWS
environment. All three algorithms demonstrate similar latency reduction trends as
load increases. Least Connection records a latency of approximately 54 ms under
low load, which decreases under medium load and reaches around 46 ms under high
load. Weighted Least Connection follows a similar trend, decreasing from
approximately 51 ms under low load to around 47 ms under high load. Meanwhile,
Least Response Time produces the highest latency under low load at approximately
56 ms, then declines to around 50 ms under medium load and stabilizes at
approximately 47 ms under high load. This decreasing latency trend is driven by
increasingly stable workload characteristics as traffic increases. Under low load,
performance disparities among servers are more pronounced, making algorithms
sensitive to initial metrics—such as Least Response Time—which results in higher
initial latency. As the load increases, all servers are forced to operate more
consistently, reducing response time variability and leading to lower latency values.

All algorithms again record an error rate of 0% across all load levels,
indicating stable system reliability under all testing scenarios. The absence of failed
requests confirms that the load distributions generated by each algorithm remain
within server capacity limits and that the distribution decisions effectively prevent
overload conditions on any individual server.

Differences in algorithm characteristics are most evident in the load
distribution parameter. Under the Least Connection algorithm, the load distribution
pattern shows a tendency that is not fully proportional to server capacity. Lower-
capacity servers continue to receive a relatively larger share of the workload,
accounting for approximately 3.20% under low load and increasing to 4.78% under
high load, while higher-capacity servers receive smaller portions in certain
scenarios. This pattern arises because Least Connection considers only the number
of active connections without accounting for server processing capacity.

A similar pattern is observed with the Least Response Time algorithm, where
smaller servers handle approximately 3.60% of the workload under low traffic and
continue to receive comparable shares under medium and high load, at
approximately 4.62% and 3.36%, respectively. This behavior indicates that the

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 10

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

algorithm prioritizes faster initial response times, even when computational
capacity is lower.

In contrast, the Weighted Least Connection algorithm produces a more
proportional workload distribution based on server capacity. Under low traffic
conditions, higher-capacity servers receive the largest share of requests at
approximately 4.83%, and this pattern remains consistent under medium and high
loads, ranging from approximately 5.25% to 5.38%. This behavior aligns with the
algorithm’s mechanism of normalizing active connections by server weight,
ensuring that higher-capacity servers handle more requests while maintaining a
balanced connection-to-weight ratio.

Performa Platform

The performance evaluation of Amazon Web Services (AWS) and Google
Cloud Platform (GCP) in this study is not intended to determine which platform is
inherently superior, but rather to observe system performance characteristics based
on application testing results within each cloud environment. The evaluation
focuses on application-level performance indicators, represented by p95 latency
and throughput, which directly reflect the quality of service experienced by end
users. CPU utilization is included as a supporting parameter to provide insight into
system stability during the testing process. All experiments were conducted within
the same region, Singapore, to minimize the impact of inter-regional network
latency differences.

This approach was adopted because the study does not employ identical
virtual machine types across AWS and GCP, although the number of vCPUs was
aligned. As a result, resource utilization—based comparisons do not fully represent
direct platform performance, and the analysis therefore emphasizes application
performance behavior rather than raw infrastructure metrics.

Visualizations of the p95 latency results for AWS and GCP are presented in
graphical form in Figures 3 and 4.

562
518
502 506
408 494 488 438 488

40
g 3
2

20

10

G d | i a_ B : ¢ S

Low High
o

Medium

I Least Connection Il Weighted Least Connection Least Response Tim:

Figure 1. Latency versus Traffic Level on AWS

11 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

Latency (ms)
8

Low Medium High

M Least Connection [l Weighted Least Connection Leest Response Time
Figure 4. Latency versus Traffic Level on GCP

Based on the p95 latency graphs for AWS and GCP shown in Figures 3 and
4, both platforms exhibit relatively stable response patterns across all load levels.
On AWS, p95 latency values remain consistent across algorithms, with only minor
fluctuations as the workload increases. This condition indicates that the AWS
instances used are still able to efficiently handle increasing workloads, such that
changes in load balancing algorithms do not result in significant variations in
response time.

In contrast, GCP shows slightly greater p95 latency variation under low load
conditions, particularly for the Least Response Time algorithm, which records
higher initial latency compared to the other algorithms. However, as the load
increases, latency values for all algorithms on GCP demonstrate a declining trend
and become more uniform under high load. This pattern indicates that increased
workload leads to more consistent resource utilization, thereby reducing disparities
in initial response times across algorithms.

Visualizations of throughput test results for the AWS and GCP platforms are
presented in graphical form in Figures 5 and 6.

600

500 48672 486 486.72

400

Throughput (Req/s)
@
28

19576 19468 19576

Low Medum Hgh

I Least Connection [l Weighted Least Connection Least Response Time

Figure 5. Throughput versus Traffic Level on AWS

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 12

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

600

487.9 487.66 487.82

500

400

Throughput (Reg/s)
©
=
2

196.9 195.28 196.2

»N
S
3

3
8

o

Low Medium

Il Least Connection [l Weighted Least Connection Least Response Time
Figure 6. Throughput versus Traffic Level on GCP

Based on the throughput graphs shown in Figures 5 and 6, both AWS and
GCP are able to maintain linear throughput growth as the workload increases. No
throughput degradation is observed on either platform or for any algorithm,
indicating that backend processing capacity remains sufficient across all testing
scenarios. The similarity in throughput patterns suggests that differences in virtual
machine characteristics do not significantly affect the system’s aggregate request
processing capability, as long as the configuration and workload remain within the
capacity limits of the instances.

As a complementary aspect of platform performance analysis, CPU
utilization was also recorded during the testing process and is summarized in Table
6.

Table 6. Comparison of Average CPU Utilization on AWS and GCP

Platform Traffic Least Weighted Least Least Response
Connection Connection Time
AWS Low 13.89 13.49 14.53
Medium 17.00 14.27 14.37
High 17.20 15.50 19.47
GCP Low 27.33 24.69 26.70
Medium 29.64 25.43 27.10
High 31.64 29.40 28.81

CPU utilization on both AWS and GCP shows a consistent increasing trend
as the workload grows, without causing any system failures across all testing
scenarios. On AWS, CPU utilization values remain relatively lower, while on GCP
they tend to be higher at each traffic level. This difference reflects variations in
virtual machine characteristics and resource management mechanisms inherent to
each platform. Therefore, CPU utilization in this study is treated as a supporting
parameter to demonstrate system stability during testing rather than as a primary
metric for direct platform comparison.

CONCLUSION
After conducting a series of experiments, this study concludes by evaluating
the performance of dynamic load balancing algorithms—Least Connection,

13 http://eduvest.greenvest.co.id

Eduvest — Journal of Universal Studies
Volume 6 Number 1, January, 2026

Weighted Least Connection, and Least Response Time—in heterogeneous server
environments for microservices-based web applications deployed on Amazon
Web Services (AWS) and Google Cloud Platform (GCP). The experimental
results indicate that no single algorithm consistently outperforms the others across
all scenarios and platforms, as each algorithm exhibits distinct load distribution
characteristics and system response behaviors. Weighted Least Connection tends
to produce a more proportional workload distribution based on server capacity,
while Least Connection and Least Response Time are more influenced by the
number of active connections and initial response times.

At the platform level, performance comparison is not intended to determine
which cloud provider is inherently superior, given the differences in virtual
machine types used. Consequently, the evaluation focuses on application-level
performance metrics, namely p95 latency and throughput, which demonstrate that
both AWS and GCP are capable of maintaining service stability across all load
levels. These findings provide empirical insights into the behavior of dynamic
load balancing algorithms in heterogeneous, cross-platform cloud environments
and emphasize that the selection of algorithms and platforms should be aligned
with workload characteristics and the specific objectives of the target system.

Despite its contributions, this study is subject to limitations in terms of
testing scale and infrastructure configuration diversity. Therefore, future work is
recommended to explore larger-scale scenarios, including an increased number of
instances, more extreme workload patterns through stress testing, and the use of
virtual machine types with more standardized vCPU characteristics to further
enrich comparative performance analysis.

REFERENCES

Abraham, 1., & Supriyati, Y. (2022). Desain kuasi eksperimen dalam pendidikan: Literatur
review. Jurnal [lmiah Mandala Education (JIME), 8(3).
https://doi.org/10.36312/jime.v8i3.3800

Akerele, J. 1., Uzoka, A., Ojukwu, P. U., & Olamijuwon, O. J. (2024). Optimizing traffic
management for public services during high-demand periods using cloud load
balancers. Computer Science & IT Research Journal, 5(11), 2594-2608.
https://doi.org/10.51594/csitrj.v5i11.1710

Alkhatib, A., Alsabbagh, A., Maraqa, R., & AlZu'bi, S. (2021). Load balancing techniques
in cloud computing: Extensive review. Advances in Science, Technology and
Engineering Systems Journal, 6(2), 860—870. https://doi.org/10.25046/aj060299

Ariestiandy, D., Suhery, L., Jusmawati, & Yanuardi. (2023). Evaluasi load balancing: Studi
komparatif least-connection dan round-robin dalam konteks cloud computing. Jurnal
Fasilkom, 13(3), 424—430. https://doi.org/10.37859/jf.v1313.6236

Arifin, S., Nugraha, A. W., Mukti, F. S., & Jatmika, S. (2024). MQTT broker optimization:
Comparative analysis of round robin and least response time. Jurnal Nasional Teknik
Elektro, 13(3), 127-136. https://doi.org/10.25077/jnte.v13n3.1260.2024

Fawwazi, M. M., Putra, E., & Putri, N. A. (2025). Evaluation and comparison of load
balancing algorithm performance in the implementation of weighted least
connections and round robin in cloud computing environment. Journal of Computer

A Comparative Study of Dynamic Load Balancing Algorithms for Microservices In
Heterogeneous Multi-Cloud Environments 14

Eduvest — Journal of Universal Studies
Volume 6, Number 1, January, 2026

Science, Information Technology and Telecommunication Engineering
(JCoSITTE), 6(1), 741-747. https://doi.org/10.30596/jcositte.v6il.21731

G A, A., & Pawar, R. (2024). Optimizing cloud application performance: A survey on load
balancing techniques. International Journal of Scientific Research in Engineering
and Management, 8(5), 1-5. https://doi.org/10.55041/ijsrem34983

Herdiansyah, R. N., Igbal, M., & Aulia, S. (2025). Perbandingan performa load balancing
pada web server di Microsoft Azure menggunakan algoritma least connection dan
round robin. e-Proceeding of Applied Science, 11(4), 1037. Fakultas [lmu Terapan,
Universitas Telkom

Kaviarasan, R., Balamurugan, G., Kalaiyarasan, R., & Reddy, Y. V. R. (2023). Effective
load balancing approach in cloud computing using inspired lion optimization
algorithm. e-Prime — Advances in Electrical Engineering, Electronics and Energy, 6,
100326. https://doi.org/10.1016/j.prime.2023.100326

Kumar, P. R., Rajagopalan, S., & Charles, J. C. P. (2023). Lightweight native edge load
balancers for edge load balancing. Global Journal of Information Systems and
Applications, 3(1), 48—55. https://doi.org/10.53623/gisa.v3il.256

Maurya, S. K., & Sinha, G. (2022). Load balancing in cloud computing: An analytical
review and proposal. Indonesian Journal of Electrical Engineering and Computer
Science, 26(3), 1530-1537. https://doi.org/10.11591/ijeecs.v26.13.pp1530-1537

Open Source Initiative. (2024). The MIT License. https://opensource.org/license/MIT

Oyediran, M. O., Ojo, O. S., Ajagbe, S. A., Aiyeniko, O., Obuzor, P. C., & Adigun, M. O.
(2024). Comprehensive review of load balancing in cloud computing system.
International Journal of Electrical and Computer Engineering, 14(3), 3244-3255.
https://doi.org/10.11591/ijece.v14i3.pp3244-3255

Rahman, S. A., & Hadiwandra, T. Y. (2023). Perbandingan algoritma weighted least
connection dan weighted round robin pada load balancing berbasis Docker Swarm.
Jurnal Inovtek Polbeng — Seri Informatika, 8(2).

Riskiono, S. D., & Pasha, D. (2020). Analisis metode load balancing dalam meningkatkan
kinerja website e-learning. Jurnal Teknoinfo, 14(1), 22-26.
https://doi.org/10.33365/jti.v14i1.466

Shafig, D. A., Jhanjhi, N. Z., & Abdullah, A. (2021). Load balancing techniques in cloud
computing environment: A review. Journal of King Saud University — Computer and
Information Sciences, 33(9), 1129-1141.
https://doi.org/10.1016/j.jksuci.2021.02.007

Sharma, V., & Sharma, H. C. (2021). A review of cloud computing scheduling algorithms.
International Journal of Innovative Science and Research Technology, 6(12).

Sinlae, A. A. J., Bagir, M., & Prayitno, M. H. (2022). Analisis perbandingan algoritma
round-robin dengan least-connection terhadap peningkatan throughput layanan web
server. JURIKOM (Jurnal Riset Komputer), 9(5), 1584-1591.
https://doi.org/10.30865/jurikom.v9i5.4995

Trivedi, D., Parmar, N., & Rahevar, M. (2023). Methodological assessment of various
algorithm types for load balancing in cloud computing. In S. Awasthi et al. (Eds.),
Sustainable computing: Transforming Industry 4.0 to Society 5.0 (pp. 269-277).
Springer. https://doi.org/10.1007/978-3-031-13577-4 16

Vithanage, K. (2018). Web-based microservice architecture example [Computer software].
GitHub. https://github.com/kasvith/simple-microservice-example

15 http://eduvest.greenvest.co.id

