

Digital Self-Efficacy and Organizational Support: a Pathway to Digital Resilience and Performance

Vellen Wibowo

STMIK Pontianak

Email: vellen.wibowo@stmikpontianak.ac.id

ABSTRACT

This study aims to examine the role of digital self-efficacy in predicting digital resilience, with perceived organizational support as a mediator between digital resilience and employees' performance in technology-based companies. This analysis seeks to uncover individual and organizational factors that foster adaptability and productive growth in the digital era. The study was conducted using a quantitative survey design with a cross-sectional approach among digital-intensive workplaces in the technology, finance, education, and e-commerce sectors. A total of more than 320 participants were recruited through online stratified random sampling. A 5-point Likert scale was used to measure responses, and Structural Equation Modeling (SEM) was employed to examine direct, indirect, and moderating effects among the study constructs. The results indicate that digital self-efficacy is significantly and positively related to digital resilience, which in turn influences employee performance. Perceived organizational support serves as a moderator in the relationship between resilience and performance, highlighting the interdependence between individual digital competencies and organizational support systems. This study contributes to the theoretical foundation of digital resilience by integrating both individual and organizational perspectives. The findings suggest that organizations should focus on enhancing employees' digital self-efficacy, fostering supportive work climates, and promoting lifelong learning. Such initiatives are vital in building resilience, unlocking creativity, and sustaining long-term performance amid ongoing digital disruption.

KEYWORDS

Digital Resilience; Digital Self-Efficacy; Perceived Organizational Support; Employee Performance; Digital Transformation

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

INTRODUCTION

The rapid acceleration of digital transformation is fundamentally reshaping organizations and disrupting established processes, thereby necessitating that employees continuously adapt to new technologies and work methodologies (Vial, 2019). While a digitized environment facilitates innovation and operational effectiveness, it also introduces significant challenges, such as increased ambiguity and heightened work-related stress among employees (Taraifdar et al., 2019). Consequently, the ability of employees to thrive amidst these technological pressures has become a critical concern for organizations seeking to maintain productivity and competitive advantage (Al_Kasasbeh, 2024; Sidik et al., 2024; Wang et al., 2024).

Within this landscape, digital resilience—defined as the capacity of individuals to not only endure but also flourish in technologically advanced virtual

work settings—has emerged as a critical competency for sustaining productivity and well-being (Bennett et al., 2020). Distinct from psychological resilience, digital resilience encompasses proactive preparation, effective utilization of technology, and the ability to maintain productivity in the face of technological disruptions (Henderson et al., 2022). Employees exhibiting high levels of digital resilience demonstrate an enhanced capacity to navigate system failures, cyber threats, and continual software updates, thereby contributing to improved organizational agility and performance (Pang et al., 2021).

Despite its growing significance, the concept of digital resilience remains an underexplored phenomenon within organizational literature, characterized by a paucity of empirical research investigating its antecedents and consequences (Mandung et al., 2025; Musa & Enggarsyah, 2025). While digital resilience has been predominantly conceptualized in extant studies, empirical inquiries into its predictors and underlying processes are notably limited (Shao et al., 2020; Tams et al., 2014). In particular, there has been insufficient exploration of the role of digital self-efficacy—defined as the belief in one's capability to effectively utilize digital tools—as a potential antecedent to resilience in technology-driven environments (Maruping et al., 2017). Furthermore, although Organizational Support Theory Eisenberger et al., (1986) posits that perceived organizational support (POS) can act as a buffer to enhance employees' adaptability and well-being, its moderating effect on the relationship between digital resilience and employee performance has yet to be systematically investigated (Newman et al., 2019).

Consequently, the present study aims to examine the effects of digital self-efficacy on digital resilience and to elucidate the mediating role of perceived organizational support in the relationship between digital resilience and employee performance (Chong et al., 2022). Specifically, this research seeks to investigate digital self-efficacy as a predictor of digital resilience, assess the impact of digital resilience on performance, and determine whether the relationship between digital resilience and performance is positively enhanced through the mediation of perceived organizational support within digitized work environments (Kurtessis et al., 2017). This research makes significant contributions to the literature, both theoretically and practically (Kao et al., 2021). Theoretically, it advances the discourse on digital resilience by empirically testing its antecedents and outcomes, thereby enriching the sparse literature on resilience within technology-rich contexts. Additionally, it integrates Organizational Support Theory Eisenberger et al., (1986) with Social Cognitive Theory Bandura, (1997), offering an expanded conceptual framework that highlights the synergistic contributions of both individual and organizational factors to overall digital resilience.

Practically, the insights gained regarding employee digital self-efficacy can provide organizations with actionable strategies for enhancing employee capabilities and fostering organizational support, thereby bolstering resilience and sustaining performance amidst ongoing digital transformation.

RESEARCH METHOD

This study uses a quantitative survey design with a cross-sectional approach because this method is most suitable for investigating a series of interrelated relationships among several elements at one point in time. This design allows access to standardized data from many participants, thereby enabling statistical generalization and robust hypothesis testing. This method also makes it possible to investigate both the direct and indirect effects of variables, thus allowing the testing of mediation and moderation effects—for example, in addition to testing the mediating effect of digital resilience between digital self-efficacy and employee performance, we can also test whether perceived organizational support (POS) acts as a moderating factor in the relationship between digital resilience and performance. The cross-sectional design of this study facilitates more efficient data collection, providing a snapshot of how psychological and organizational factors are interrelated within the ongoing context of digital transformation in the workplace.

The sample in this study consists of employees working in environments with high digital demands—namely, jobs that require daily interaction with computers and digital systems. This sample includes employees from technology organizations, banks, financial institutions, education, e-commerce, as well as remote and hybrid work sectors, all of which are experiencing rapid digital transformation. To ensure participants are directly exposed to digital work systems, the technique used is stratified random sampling. Stratified random sampling categorizes the population into subgroups (for example, by industry or job type) to ensure a proportional and representative sample. To produce credible and generalizable results—particularly in the application of Structural Equation Modeling (SEM)—a large sample size is required for accuracy, with at least 300 subjects to be recruited. This aligns with the recommendations of Hair et al. (2010) for complex SEM analyses.

An online questionnaire survey will be used to collect data to reach participants widely and ensure their convenience. This survey will be administered through platforms such as Google Forms due to its ease of use, security features, and user-friendly interface. The questionnaire will be distributed through professional channels (such as HR departments, LinkedIn, professional communities, and others), targeting employees from various organizations and backgrounds. To quantitatively assess participants' responses, the questionnaire will employ a Likert scale format (1 = Strongly Disagree to 5 = Strongly Agree) for all items, facilitating comprehensive data on participants' attitudes, beliefs, and perceptions related to digital self-efficacy, digital resilience, perceived organizational support, and employee performance.

Table 1. Construct and measurement scale

Construct	Measurement Scale & Source	Items
Digital Self-Efficacy	Adapted from Compeau & Higgins (1995); Maruping et al. (2017)	<ul style="list-style-type: none"> I feel confident in learning new digital systems at work. I can handle digital problems without needing much assistance. I am confident I can use new digital tools even when they are complex. I feel confident using digital platforms to communicate and collaborate with others. I can independently solve problems using technology in my work. I feel capable of adapting to frequent technology updates in my workplace. I can complete tasks efficiently using digital tools. I feel comfortable training others to use digital systems.
Digital Resilience	Adapted from Bennett et al. (2020); Pang et al. (2021)	<ul style="list-style-type: none"> I quickly adapt when digital tools or systems change in my workplace. I remain productive even when facing digital disruptions (e.g., errors, system failures). I easily recover after experiencing technical failures at work. I see digital changes as opportunities to grow, not as threats. I stay calm and effective while dealing with unexpected technology problems. I am proactive in updating my skills to keep up with digital changes. I can maintain focus and performance during periods of digital transformation. I look for solutions when digital challenges arise, rather than feeling discouraged. I feel mentally prepared to face rapid digital developments in my work. I actively seek new ways to adapt to the ever-evolving digital environment.
Perceived Organizational Support (POS)	Eisenberger et al. (1986) – Survey of Perceived Organizational Support	<ul style="list-style-type: none"> My organization takes my goals and values into great consideration. My organization genuinely cares about my well-being.

Construct	Measurement Scale & Source	Items
Employee Performance	Adapted from Borman & Motowidlo (1997); Griffin et al. (2007)	<ul style="list-style-type: none"> • My organization shows concern for me as an individual. • My organization is proud of my achievements. • My organization values my contributions to its success. • My organization provides me with resources to face digital challenges. • My organization supports me when I face difficulties using digital systems. • My organization appreciates my efforts in adapting to new technologies. <p>Task Performance</p> <ul style="list-style-type: none"> • I complete my job tasks effectively. • I consistently meet the quality standards of my work. • I finish tasks on time, even when using digital tools. • I handle changes in work procedures effectively. • I achieve work goals that require the use of technology. <p>Contextual Performance:</p> <ul style="list-style-type: none"> • I voluntarily help colleagues with technical tasks or the use of digital tools. • I take the initiative to learn new technologies that benefit my team. • I adjust my working style to meet the needs of the changing digital environment. • I stay positive even when technical problems arise. • I actively contribute to a supportive digital work culture.

To ensure the validity and reliability of the measurement instrument, a pilot test involving approximately 30 participants will be conducted before full-scale data collection. This initial step is important to identify ambiguous wording, improve item clarity, and evaluate internal consistency through Cronbach's alpha, with a threshold of $\alpha > 0.70$ indicating acceptable reliability. For data analysis, this study will use a two-stage analytical procedure. Descriptive statistics (mean and standard deviation) will be used to describe the sample characteristics, while diagnostic tests will assess normality and multicollinearity. Reliability testing using Cronbach's alpha will ensure the internal consistency of each construct. This

examination is necessary to confirm the appropriateness of the data for further analysis.

Structural Equation Modeling (SEM) will be conducted using software such as AMOS. SEM is particularly suitable for this study due to the complexity of the research framework, which includes mediation and moderation paths. SEM allows the simultaneous analysis of multiple relationships among latent constructs while accounting for measurement error. In this context, digital resilience will be tested as a mediating variable between digital self-efficacy and employee performance, whereas perceived organizational support (POS) will be analyzed as a moderator in the relationship between digital resilience and performance. The capacity of SEM to model both direct and indirect effects makes it the most appropriate technique to validate the hypothesized structural model.

This study will comply with established ethical research standards. Participants will receive an informed consent form explaining the purpose of the study, their rights, and the voluntary nature of participation, including the ability to withdraw at any time. The confidentiality and anonymity of all responses will be guaranteed. In addition, the research protocol will be submitted for ethical clearance from the Institutional Review Board (IRB) or an equivalent ethics committee at the relevant institution to ensure compliance with national and international research ethics guidelines.

RESULT AND DISCUSSION

In this section, calculations and discussions are carried out based on the data obtained in the field during the research period. The analysis consists of descriptive analysis and verification analysis, which are used to examine the relationships among the research variables. The research variables include Digital Self-Efficacy, Digital Resilience, Perceived Organizational Support, and Employee Performance. The total number of respondents in this study was 300. The results of this study are presented in several sub-sections, namely: (1) descriptive analysis and (2) verification analysis using Structural Equation Modeling (SEM).

The validity test was conducted by correlating the response scores of each question item with the total score of the corresponding variable. The correlation technique used was the Pearson Product-Moment Correlation, which is appropriate for ordinal data measurement scales. The benchmark used to determine whether an item was valid or not was 0.361 (see Chapter 3). The following are the results of the validity and reliability tests for the Digital Self-Efficacy variable based on the IBM SPSS 26.0 output that has been recapitulated.

Table 2. Variable Validity Test

Variable	Code	r-statistics	Cut Off	Status
Digital Self Efficacy	DSE1	0,781	0,361	Valid
	DSE2	0,434	0,361	Valid

Variable	Code	r-statistics	Cut Off	Status
Digital Resilience	DSE3	0,558	0,361	Valid
	DSE4	0,711	0,361	Valid
	DSE5	0,617	0,361	Valid
	DSE6	0,744	0,361	Valid
	DSE7	0,810	0,361	Valid
	DSE8	0,901	0,361	Valid
	DR1	0,778	0,361	Valid
	DR2	0,659	0,361	Valid
	DR3	0,715	0,361	Valid
	DR4	0,695	0,361	Valid
Employee Performance	DR5	0,590	0,361	Valid
	DR6	0,814	0,361	Valid
	DR7	0,387	0,361	Valid
	DR8	0,510	0,361	Valid
	DR9	0,784	0,361	Valid
	DR10	0,709	0,361	Valid
	EP1	0,749	0,361	Valid
	EP2	0,515	0,361	Valid
	EP3	0,827	0,361	Valid
	EP4	0,727	0,361	Valid
Perceived Organizational Support	EP5	0,688	0,361	Valid
	EP6	0,687	0,361	Valid
	EP7	0,507	0,361	Valid
	EP8	0,777	0,361	Valid
	EP9	0,486	0,361	Valid
	EP10	0,494	0,361	Valid
	POS1	0,690	0,361	Valid
	POS2	0,824	0,361	Valid
	POS3	0,665	0,361	Valid
	POS4	0,428	0,361	Valid
	POS5	0,775	0,361	Valid
	POS6	0,464	0,361	Valid
	POS7	0,584	0,361	Valid
	POS8	0,705	0,361	Valid

Source: Primary Data Processing Results, 2025

The validity test results on this research questionnaire must compare between the item correlation number and the total correlation obtained with the item r number > r table (Ghozali, 2013:45). Since the correlation numbers obtained in each of these indicators are above 0.361, the questions are decided to be significant and have good validity. The reliability test is used to see the stability or consistency of measurement results. A measuring instrument is said to be reliable if, when used repeatedly on one object, it produces the same results. The reliability technique used is inter-item consistency reliability, and the author uses the Cronbach's alpha test. The following are the reliability test results for each variable.

Table 3. Reability Test of Variables

Variable	Cronbach's Alpha	Decision
Digital Self Efficacy	0,844	Reliable

Digital Resilience	0,856	Reliable
Employee Performance	0,844	Reliable
Perceived Organizational Support	0,768	Reliable

Source: Primary Data Processing Results, 2025

The reliability test in this research used the Cronbach's alpha method. A construct or variable is considered reliable if it produces a Cronbach's alpha value greater than 0.60 (Ghozali, 2013:41). Based on the reliability test results, it can be concluded that all the variables examined in this study exhibit a very good level of reliability. Using a cut-off value of Cronbach's alpha of 0.70 as the standard, the four variables—Digital Self-Efficacy, Digital Resilience, Employee Performance, and Perceived Organizational Support—all show Cronbach's alpha values exceeding this threshold. Specifically, the variables Digital Self-Efficacy and Employee Performance each have a value of 0.844; Digital Resilience is 0.856; and Perceived Organizational Support is 0.768. Since all these values are above 0.70, it can be concluded that the research instrument used to measure each variable has high internal consistency and can be relied upon for data collection. In other words, the questionnaire items consistently measure the same concept, ensuring that the data produced are reliable and suitable for further analysis.

Descriptive analysis is used to interpret the data and information obtained from respondents by collecting, organizing, and classifying the data. In this research, the instrument used was a questionnaire in which each question had five response options that the respondents were required to select. Each option was assigned a weighted score: 1 for Strongly Disagree (STS), 2 for Disagree (TS), 3 for Neutral (C), 4 for Agree (S), and 5 for Strongly Agree (SS). The scores obtained were then averaged and compared with the assessment criteria determined based on the highest and lowest scores from the questionnaire results. The calculation is as follows:

1. Minimum score = 1
2. Maximum score = 5
3. Score range = maximum score – minimum score = $5 - 1 = 4$
4. Interval of each category = $\text{score range} \div 5 = 4 \div 5 = 0.8$

Based on these calculations, the score interpretation criteria were arranged, which can be seen in the following table.

Table 4. Interpretation Category of Cronbach's Alpha Score

No	Average Score	Category
1	1.0 – 1.8	Very Poor/ Very Low
2	>1.8 – 2.6	Poor/Low
3	>2.6 – 3.4	Fair
4	>3.4 – 4.2	Good/High
5	>4.2 – 5.0	Very Good/Very High

Source: Sugiyono (2015:183)

Descriptive analysis was carried out to obtain an overview of respondents' perceptions regarding the variables in the research based on the calculation results from the assessments of 300 respondents that had been obtained. The Digital Self-Efficacy variable is represented by 8 (eight) statement items as follows.

Table 5. Descriptive Analysis of Digital Self-Efficacy

Variable	Indicator	Response Options					Score	Average Score	Category
		1	2	3	4	5			
Digital Self-Efficacy	DSE_1	0	3	4	17	81	1231	4.10	Good
	DSE_2	0	3	4	15	92	1239	4.13	Good
	DSE_3	0	4	5	16	83	1224	4.08	Good
	DSE_4	0	3	4	15	96	1241	4.14	Good
	DSE_5	0	2	4	15	10	1248	4.16	Good
	DSE_6	0	2	5	17	73	1215	4.05	Good
	DSE_7	0	1	4	16	95	1250	4.17	Good
	DSE_8	0	4	4	15	96	1244	4.15	Good
Average Score of Digital Self-Efficacy						1236.5	4.12	Good	
Standard Deviation Value of Digital Self-Efficacy						12.24 ₁	0.04		

Source: Research Data Processing Results, 2025

Based on the results of the descriptive analysis presented in Table 5, the Digital Self-Efficacy variable has an average value of 4.12 ± 0.04 . This average value falls within the range of 4.20–5.00, thus belonging to the good category. The statement item with the highest average value is DSE_7 (4.17), followed by DSE_5 (4.16) and DSE_8 (4.15). This indicates that these three items represent the aspects of Digital Self-Efficacy most strongly perceived by the respondents. Meanwhile, the statement item with the lowest average value is DSE_6 (4.05), followed by DSE_3 (4.08) and DSE_1 (4.10). Although still within the good category, these lower values suggest that the aspects of Digital Self-Efficacy captured by these items are relatively less prominent compared with the others. Overall, the results show that respondents have a positive perception of their Digital Self-Efficacy, with relatively small variations in scores across items. The Digital Resilience variable is represented by ten (10) statement items, as follows.

Table 6. Descriptive Analysis of Digital Resilience

Variable	Indicator	Response Options					Score	Average Score	Category
		1	2	3	4	5			

Digital Resilience	DR_1	0	5	5	16	7	1201	4.00	Good
	DR_2	0	2	4	16	8	1234	4.11	Good
	DR_3	0	2	5	14	9	1232	4.11	Good
	DR_4	0	3	5	16	8	1217	4.06	Good
	DR_5	0	1	5	15	9	1237	4.12	Good
	DR_6	0	5	5	16	7	1216	4.05	Good
	DR_7	0	3	4	17	7	1231	4.10	Good
	DR_8	0	3	5	15	8	1220	4.07	Good
	DR_9	0	2	3	17	8	1246	4.15	Good
	DR_10	0	2	5	16	8	1219	4.06	Good
Average Score of Digital Resilience							1225. 3	4.08	Good
Standard Deviation Value of Digital Resilience							13.05	0.04	

Source: Research Data Processing Results, 2025

Based on the results of the descriptive analysis presented in Table 6, the Digital Resilience variable has an average value of 4.08 ± 0.04 . This average value falls within the range of 4.20–5.00, thus belonging to the good category. The statement item with the highest average value is DR_9 (4.15), followed by DR_5 (4.12), DR_2 (4.11), and DR_3 (4.11). This indicates that these four items represent the aspects of Digital Resilience most strongly perceived by the respondents. Meanwhile, the statement item with the lowest average value is DR_1 (4.00), followed by DR_6 (4.05), and DR_4 and DR_10, which share the same average value (4.06). Although still within the good category, these lower values suggest that, for those indicators, respondents' level of Digital Resilience is slightly lower than for other items. Overall, these results illustrate that respondents have a positive perception of their Digital Resilience, with relatively small variations in scores across items. The Employee Performance variable is represented by ten (10) statement items, as follows.

Table 7. Descriptive Analysis of Employee Performance

Variable	Indicator	1	2	3	4	5	Score	Average Score	Category
Employee Performance	EP_1	0	1	5	14	10	1245	4.15	Good
	EP_2	0	5	5	15	89	1227	4.09	Good
	EP_3	0	3	4	16	92	1241	4.14	Good

Variable	Indicator	Response Options					Score	Average Score	Category
		1	2	3	4	5			
	EP_4	0	4	3	15	98	1251	4.17	Good
	EP_5	0	3	3	15	10	1255	4.18	Good
	EP_6	0	4	4	14	10	1247	4.16	Good
	EP_7	0	1	4	16	90	1240	4.13	Good
	EP_8	0	7	4	14	10	1243	4.14	Good
	EP_9	0	2	4	17	82	1232	4.11	Good
	EP_10	0	6	4	15	95	1239	4.13	Good
Average Score of Employee Performance							124	4.14	Good
Standard Deviation Value of Employee Performance							8.33	0.03	

Source: Research Data Processing Results, 2025

Based on the results of descriptive analysis in Table 7, the Employee Performance variable has an average value of 4.14 ± 0.03 . This average value falls within the range of 4.20–5.00, thus belonging to the good category. The item with the highest average value is EP_5 (4.18), followed by EP_4 (4.17) and EP_6 (4.16). This shows that these three statement items represent the aspects of Employee Performance that are the most prominent among all the indicators measured. Meanwhile, the statement item with the lowest average value is EP_2 (4.09), followed by EP_9 (4.11) and EP_7 (4.13) as well as EP_10 (4.13). Although still included in the good category, these lower values indicate that the aspects of Employee Performance in those indicators are relatively slightly below the other items. This indicates that respondents have a positive perception of their Employee Performance, with relatively small differences in scores between items, thus showing performance consistency across the various aspects measured. The Perceived Organizational Support variable is represented by 8 (eight) statement items as follows.

Table 8. Descriptive Analysis of Perceived Organizational Support

Variable	Indicator	Response options					Score	Average Score	Category
		1	2	3	4	5			
Perceived Organizational Support	POS_1	0	4	61	144	91	1222	4.07	Good
	POS_2	0	10	48	168	74	1206	4.02	Good
	POS_3	0	8	37	160	95	1242	4.14	Good
	POS_4	0	7	48	160	85	1223	4.08	Good
	POS_5	0	6	55	157	82	1215	4.05	Good
	POS_6	0	4	46	152	98	1244	4.15	Good
	POS_7	0	6	49	163	82	1221	4.07	Good
	POS_8	0	10	41	177	72	1211	4.04	Good
Average Score of Perceived Organizational Support (POS)							1223	4.08	Good

Variable	Indicator	Response options					Score	Average Score	Category
		1	2	3	4	5			
Standard Deviation Value of Perceived Organizational Support (POS)							13.64865	0.05	

Source: Research Data Processing Results, 2025

Based on the results of the descriptive analysis presented in Table 8, the Perceived Organizational Support (POS) variable has an average value of 4.08 ± 0.05 . This average value falls within the range of 4.20–5.00, thus belonging to the good category. The statement item with the highest average value is POS_6 (4.15), followed by POS_3 (4.14) and POS_4 (4.08). This indicates that these three items represent the aspects of Perceived Organizational Support most strongly perceived by the respondents. Meanwhile, the item with the lowest average value is POS_2 (4.02), followed by POS_8 (4.04) and POS_5 (4.05). Although still within the good category, these lower values suggest that, for those indicators, the organizational support perceived by respondents is slightly lower than in other items. Overall, respondents have a positive perception of Perceived Organizational Support, with only small score variations between items, indicating consistent perceptions across all measured indicators.

Based on the results of the descriptive analysis of the four research variables—Digital Self-Efficacy, Digital Resilience, Employee Performance, and Perceived Organizational Support—it was found that all variables have average values falling within the good category, with relatively small variations in scores between items. This indicates that respondents tend to have positive and consistent views regarding the aspects measured in this study. The Digital Self-Efficacy variable obtained an average value of 4.12 with a standard deviation of 0.04, with the highest score found for DSE_7 (4.17) and the lowest for DSE_6 (4.05). The Digital Resilience variable recorded an average value of 4.08 with a standard deviation of 0.04, with the highest score achieved by DR_9 (4.15) and the lowest by DR_1 (4.00).

Meanwhile, the Employee Performance variable recorded an average value of 4.14 with a standard deviation of 0.03. The highest score was observed for EP_5 (4.18), while the lowest was for EP_2 (4.09). For the Perceived Organizational Support variable, the average value was 4.08 with a standard deviation of 0.05, with the highest score for POS_6 (4.15) and the lowest for POS_2 (4.02).

Verification analysis was conducted to examine the relationships among the latent variables in this study, using the Structural Equation Modeling (SEM) method. SEM comprises two types of models: the measurement model and the structural model. The measurement model explains how well each indicator serves as a measurement instrument for the latent variables through validity and reliability testing of the research indicators. The structural model tests the goodness of fit of the inner model by examining the effects of each exogenous latent variable on the endogenous latent variable.

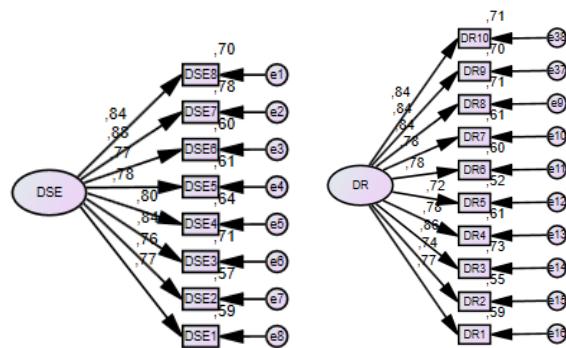
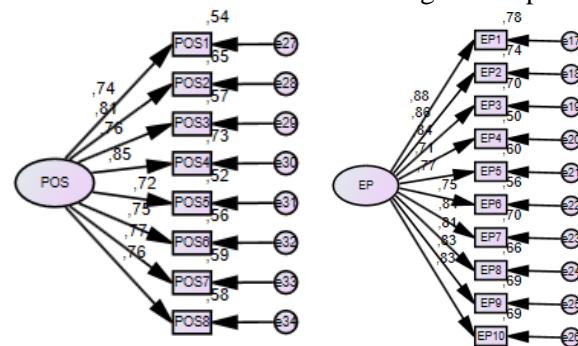

Testing of the measurement model in this research used a single-level test, namely the Confirmatory Factor Analysis (CFA) first-order approach. The results of the CFA test are explained as follows:

Table 9. Summary Results of the Measurement Model (CFA)


Latent Variable	Manifest Variable	λ	λ^2	e	CR	AVE
Digital Self Efficacy	DSE1	0.771	0.594	0.406		
	DSE2	0.757	0.573	0.427		
	DSE3	0.840	0.706	0.294		
	DSE4	0.801	0.642	0.358		
	DSE5	0.779	0.607	0.393	0.937	0.650
	DSE6	0.774	0.599	0.401		
	DSE7	0.882	0.778	0.222		
	DSE8	0.838	0.702	0.298		
	DR1	0.770	0.593	0.407		
	DR2	0.741	0.549	0.451		
Digital Resilience	DR3	0.857	0.734	0.266		
	DR4	0.782	0.612	0.388		
	DR5	0.718	0.516	0.484		
	DR6	0.776	0.602	0.398	0.945	0.633
	DR7	0.779	0.607	0.393		
	DR8	0.842	0.709	0.291		
	DR9	0.836	0.699	0.301		
	DR10	0.844	0.712	0.288		
	POS1	0.738	0.545	0.455		
	POS2	0.806	0.650	0.350		
Perceived Organizational Support	POS3	0.758	0.575	0.425		
	POS4	0.854	0.729	0.271	0.920	0.592
	POS5	0.719	0.517	0.483		
	POS6	0.746	0.557	0.443		
	POS7	0.767	0.588	0.412		
	POS8	0.759	0.576	0.424		
	EP1	0.885	0.783	0.217		
	EP2	0.859	0.738	0.262		
	EP3	0.835	0.697	0.303		
	EP4	0.709	0.503	0.497		
Employee Performance	EP5	0.773	0.598	0.402	0.951	0.662
	EP6	0.750	0.563	0.438		
	EP7	0.837	0.701	0.299		
	EP8	0.810	0.656	0.344		
	EP9	0.833	0.694	0.306		
	EP10	0.830	0.689	0.311		

The data in Table 9 show that all standardized factor loading (λ) values are ≥ 0.50 , meaning that all indicators are declared to have good validity. Likewise, the reliability of the measurement model is shown by the CR value ≥ 0.70 and VE ≥ 0.50 . All indicators are declared valid and reliable for measuring the variables digital marketing, e-service quality, e-trust, e-satisfaction, and e-repurchase intention.

Figure 2. Measurement Model of the Independent Variable

Figure 3. Measurement Model of the Moderating and Dependent Variables

Based on the research paradigm, there are two structural models to be tested in this research. The statistical test results on the measurement of the structural model in this research produced the following structural equations:

$$DR = 0.769DSE, \quad R^2 = 0.591 \quad (1)$$

$$EP = 0.478DR + 0.306POS + 0.428DR \times POS, \quad R^2 = 0.505 \quad (2)$$

Notes:

DR : Digital Resilience

DSE : Digital Self-Efficacy

POS : Perceived Organizational Support

EP : Employee Performance

DR_xPOS : Moderation

The analysis of the regression equations reveals significant relationships among the variables studied. Based on the first equation, it can be concluded that Digital Self-Efficacy (DSE) has a strong and positive effect on Digital Resilience (DR). The coefficient value of 0.769 indicates that the higher an individual's confidence in using digital technology, the higher their level of digital resilience. The R value of 0.591 shows that approximately 59.1% of the variation in Digital Resilience can be explained by Digital Self-Efficacy, demonstrating that Digital Self-Efficacy is a strong predictor of Digital Resilience.

In Equation (2), the results show that both Digital Resilience (DR) and Perceived Organizational Support (POS) have a direct positive effect on Employee Performance. This finding indicates that employees who possess good digital resilience and perceive high organizational support tend to exhibit higher performance levels. Notably, there is also a positive moderating effect of Perceived Organizational Support (POS). The interaction coefficient of 0.428 suggests that the positive relationship between Digital Resilience and Employee Performance becomes stronger when employees perceive greater organizational support. In other words, organizational support functions as a reinforcing factor that amplifies the positive influence of digital resilience on performance.

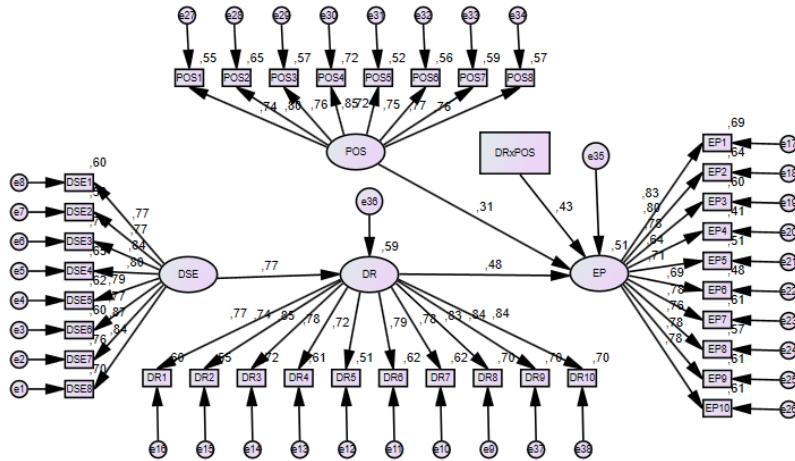

Overall, this model explains 50.5% of the variation in Employee Performance, indicating that the combination of these three factors serves as a reliable predictor. After the structural equations were identified, the next step was to test the model's level of fit using the Goodness of Fit Index approach. This test was conducted to determine whether the model, as developed from theoretical foundations, demonstrates an adequate fit with the empirical data collected through the field questionnaire. The test results are presented in Table 10 below:

Table 10. Model Fit Test Results

GOF	Acceptable Match Level	Model Index	Explanation
GFI	GFI ≥ 0.9 (good fit), $0.8 \leq \text{GFI} \leq 0.9$ (marginal fit)	0,814	Marginal Fit
RMR	RMR ≤ 0.5	0.026	Good Fit
RMS	$0.05 < \text{RMSEA} \leq 0.08$ (good fit), $0.08 < \text{RMSEA}$	0.070	Good Fit
EA	≤ 1 (marginal fit)		
TLI	TLI ≥ 0.9 (good fit), $0.8 \leq \text{TLI} \leq 0.9$ (marginal fit)	0.907	Good Fit
NFI	NFI ≥ 0.9 (good fit), $0.8 \leq \text{NFI} \leq 0.9$ (marginal fit)	0.902	Good Fit
AGFI	AGFI ≥ 0.9 (good fit), $0.8 \leq \text{AGFI} \leq 0.9$ (marginal fit)	0.806	Marginal Fit
IFI	IFI ≥ 0.9 (good fit), $0.8 \geq \text{IFI} \leq 0.9$ (marginal fit)	0.915	Good Fit
CFI	CFI ≥ 0.9 (good fit), $0.8 \leq \text{CFI} \leq 0.9$ (marginal fit)	0.914	Good Fit

Based on the table, it can be seen that out of 8 Goodness of Fit indicators, there are 2 indicators that fall into the marginal fit category. Meanwhile, the other indicators fall into the good fit category. Thus, the research model is continued with hypothesis testing. Next, hypothesis testing of the research is carried out. The magnitude of the influence between the latent variables produced can be identified by looking at the path coefficient values that were previously written in the equation. The path coefficient values formed in this research are shown in Figure 4.

Figure 4. Structural Model Diagram (Standardized Solutions)

The following are the results of statistical hypothesis testing based on the AMOS output, which will be described in more detail in the hypothesis testing as follows:

Table 11. Hypothesis Testing Results

		Estimate	S.E.	C.R.	P	Label
DR <---	DSE	0,769	0,058	13,200	***	
EP <---	DR	0,478	0,045	9,226	***	
EP <---	POS	0,306	0,046	6,112	***	
EP <---	DRxPOS	0,428	0,110	9,113	***	

Based on the recapitulation results in the table above, the details of the hypothesis testing can be presented as follows.

1. The Effect of Digital Self-Efficacy on Digital Resilience

Next, the statistical hypothesis is formulated as follows:

$H_0: \rho_1 = 0$ — Digital Self-Efficacy has no significant effect on Digital Resilience.

$H_1: \rho_1 \neq 0$ — Digital Self-Efficacy has a significant effect on Digital Resilience.

Based on the figure above, it can be seen that the t-value for the Digital Self-Efficacy variable on Digital Resilience is 13.200, which is greater than the t-critical value of 1.96. Since the t-value exceeds the t-critical value, at a 5% error level it is decided to accept H_1 and reject H_0 . Thus, it can be concluded that Digital Self-Efficacy has a significant effect on Digital Resilience. The direction of the relationship between Digital Self-Efficacy and Digital Resilience is positive, meaning that when there is an increase in Digital Self-Efficacy, Digital Resilience will also increase, and vice versa.

2. The Effect of Digital Resilience on Employee Performance

Next, the statistical hypothesis is formulated as follows:

$H_0: \rho_2 = 0$ — Digital Resilience has no significant effect on Employee Performance.

$H_1: \rho_2 \neq 0$ — Digital Resilience has a significant effect on Employee Performance.

Based on the figure above, it can be seen that the t-value for the Digital Resilience variable on Employee Performance is 9.226, greater than the t-critical value of 1.96. Since the t-value is greater than the t-critical value, at a 5% error level it is decided to accept H_1 and reject H_0 . Thus, it can be concluded that Digital Resilience has a significant effect on Employee Performance. The direction of the relationship between Digital Resilience and Employee Performance is positive, meaning that when there is an increase in Digital Resilience, Employee Performance will also increase, and vice versa.

3. The Effect of Perceived Organizational Support on Employee Performance
Next, the statistical hypothesis is formulated as follows:

$H_0: \rho_3 = 0$ — Perceived Organizational Support has no significant effect on Employee Performance.

$H_1: \rho_3 \neq 0$ — Perceived Organizational Support has a significant effect on Employee Performance.

Based on the figure above, it can be seen that the t-value for the Perceived Organizational Support variable on Employee Performance is 6.112, greater than the t-critical value of 1.96. Since the t-value is greater than the t-critical value, at a 5% error level it is decided to accept H_1 and reject H_0 . Thus, it can be concluded that Perceived Organizational Support has a significant effect on Employee Performance. The direction of the relationship between Perceived Organizational Support and Employee Performance is positive, meaning that when there is an increase in Perceived Organizational Support, Employee Performance will also increase, and vice versa.

4. The Effect of Digital Resilience on Employee Performance Moderated by Perceived Organizational Support

Next, the statistical hypothesis is formulated as follows:

$H_0: \rho_4 = 0$ — Digital Resilience has no significant effect on Employee Performance moderated by Perceived Organizational Support.

$H_1: \rho_4 \neq 0$ — Digital Resilience has a significant effect on Employee Performance moderated by Perceived Organizational Support.

Based on the figure above, it can be seen that the t-value for the Digital Resilience variable on Employee Performance is 9.113, greater than the t-critical value of 1.96. Since the t-value is greater than the t-critical value, at a 5% error level it is decided to accept H_1 and reject H_0 . Thus, it can be concluded that Digital Resilience has a significant effect on Employee Performance. The direction of the relationship between Digital Resilience and Employee Performance is positive, meaning that when there is an increase in Digital Resilience, Employee Performance will also increase, and vice versa.

Based on the details of the hypothesis testing above, a recapitulation of the hypothesis testing can be made as follows.

Table 12. Summary of Hypothesis Testing Results

Alternative Hypothesis (Ha)	Path	t-value (>1,96)	Path Coefficient	P value	Conclusion of the Null Hypothesis(H0)
H1	DSE → DR	13,200	0,769	0,000	Accepted
H2	DR → EP	9,226	0,478	0,000	Accepted
H3	POS → EP	6,112	0,306	0,000	Accepted
H4	DRxPOS → EP	9,113	0,428	0,000	Accepted

Note: The t-value was generated from the AMOS output

The results of the study show that Digital Self-Efficacy (DSE) has a positive and significant effect on Digital Resilience (DR). This finding indicates that individuals' belief in their ability to master digital technologies serves as an essential foundation for building digital resilience. Employees with a high level of DSE tend to have better mental readiness, feel more competent, and are more confident when facing challenges or obstacles related to digital systems. This belief encourages them to continue learning, adapting, and seeking alternative solutions when confronted with digital disruptions, thereby facilitating resilience in dynamic work environments. This finding is consistent with social cognitive theory, which emphasizes self-efficacy as a key determinant of individual behavior and adaptation. In the digital context, self-efficacy functions as a psychological mechanism that reduces anxiety, increases perseverance, and strengthens problem-solving skills when dealing with technological uncertainty. Previous studies also support this result, showing that self-efficacy contributes to individuals' ability to recover from technology-related work stress and accelerates adaptation to digital changes (Newman et al., 2019; Park & Lim, 2022).

Furthermore, this study highlights that digital resilience is not solely formed through technical skill enhancement but is also influenced by the psychological dimension of self-belief. Employees who possess technical skills without confidence are more vulnerable when facing rapid system changes. Conversely, those with high DSE are not only capable of using technology but also view changes as opportunities to enhance their work capacity. This finding shows that organizations need to pay attention to the psychological aspects of employees, in addition to providing technical training, as both complement each other in supporting successful digital transformation.

In high digital-demand work environments—such as banking, education, e-commerce, or remote work—DSE acts as a critical differentiator in determining how well employees can sustain performance. Research by Pang et al. (2021) emphasizes that digital resilience has strategic implications for organizations, as resilient individuals are not only able to withstand pressure but also maintain productivity and support organizational agility. Thus, improving DSE among employees can be viewed as a long-term investment for organizations to build a workforce resilient to ongoing technological changes.

The hypothesis testing results show that Digital Resilience (DR) has a positive and significant effect on Employee Performance (EP). This finding indicates that digital resilience is one of the key psychological factors that determine an employee's ability to maintain and even improve performance levels, especially in the context of accelerating digital transformation. With stronger resilience, employees can better handle the pressures arising from crises and seize additional opportunities achievable through persistence.

In modern organizations, where digital system changes often coincide with the introduction of new tools and platform upgrades, DR serves as an adaptive mechanism that goes beyond technical skills alone. Employees with high levels of digital resilience can manage stress more effectively, find solutions to issues such as technostress that may cause burnout, and sustain productivity under uncertainty. Previous studies support this argument, showing that resilience plays an essential role in maintaining work performance under stress; resilient individuals are able to remain focused, persistent, and emotionally stable (Hartmann et al., 2020; Cooper et al., 2021). Moreover, digital resilience is not only about the ability to recover from disruptions caused by new technologies but also reflects employees' capacity for innovation. Resilient employees are more open to new technologies and willing to try diverse approaches to work. When systems encounter difficulties, they can generate creative solutions. Performance outcomes are not merely reactive (coping with crises) but also proactive through initiatives that add value to the organization. This finding aligns with the idea that resilience in the digital domain provides a strong foundation for workplace agility, which is crucial in technology-driven environments (Shoss et al., 2018).

In addition, the results of this study practically confirm that developing employees' digital resilience is a strategic investment for an organization's future success. Therefore, programs such as technology skills training, support for managing digital stress, and the creation of a flexible work culture can strengthen employee resilience in facing these challenges. With this approach, organizations not only enhance individuals' capacity to withstand digital disruptions but also build more resilient, productive, and innovative workplaces amid inevitable technological fluctuations. Digital enterprises require a clear and mutually beneficial relationship between the organization and its employees. In the context of rapid change, reliance on cross-functional collaboration, and knowledge-based work environments, this reciprocal relationship becomes crucial.

One of the key variables in this discussion is Perceived Organizational Support (POS), which refers to employees' perception that the organization values their contributions and cares about their well-being. This perception motivates employees to "reciprocate" through improved task performance and extra-role behaviors that exceed expectations. Empirical evidence supporting this theory can be traced back to classic works on Organizational Support Theory, which elaborate on responsibilities and additional obligations. Subsequent meta-analytic studies

have shown that the influence of POS on performance and commitment is both significant and consistent. This becomes even more relevant when considering that digital skills directly impact work outcomes, with clear pathways to effective implementation. Employees who have access to functional collaboration tools, flexible policies, and minimal technical disruptions—such as frequent computer replacements or persistent system bugs—will perceive that they are fairly supported. This perception of support fosters greater work engagement, encompassing energy, focus, and dedication, which in turn directly improves product quality, adherence to deadlines, and proactive problem-solving initiatives.

In the increasingly common context of remote work, tangible organizational support—such as flexible policies, IT assistance, and transparent managerial communication—becomes crucial for enhancing productivity and engagement. Empirical studies examining organizational support in remote work settings highlight the importance of this function. Additionally, fostering a culture of learning and rapid experimentation is another vital capability for digital organizations. Digital transformation demands continuous learning and adaptation. POS serves as a catalyst in this process; when employees feel supported—through opportunities to experiment without fear of sanctions, access to learning resources, and leadership encouragement to take new initiatives—organizations can enhance their capacity to develop new products quickly while adopting technologies efficiently. When organizational learning and transformation capabilities are analyzed within the context of POS, the data show that POS mediates and strengthens the influence of digital transformation on organizational productivity and learning capacity.

Established practices in building POS in digital enterprises focus on three main areas:

1. Providing technical resources and interactive internal digital experiences (Digital Employee Experience/DEX)—including functional tools and effective IT support.
2. Offering clear career paths and structured learning, such as bootcamps, learning allowances, and mentoring or pair programming.
3. Leadership that provides genuine recognition, procedural justice, and psychological space to try new things and manage their own work environment.

This integrated approach not only reduces technical skill deficiencies but also significantly improves the speed and quality of work performed per unit of time. Based on Organizational Support Theory (OST) research, digital organizations now routinely measure Perceived Organizational Support (POS) alongside engagement metrics and retention rates. This approach enables organizations to monitor the effects of implemented programs and to make necessary adjustments quickly.

In the context of digital enterprises, POS functions as a strategic instrument—not merely an HR policy—because it transforms practical support

(tools, training, and policies) into initiative, commitment, and proactive behavior that directly enhances productivity. Measured investments in organizational support—including reliable technology, supportive leadership, and clear professional growth pathways—yield substantial returns in productivity, creativity, and the retention of valuable employees. Both foundational and meta-analytic sources provide a strong basis for responsible intervention planning. Research findings by Chen SH (2018) indicate that POS acts as a strengthening factor (moderator) that enhances the effect of Digital Resilience (DR) on Employee Performance (EP). Digital resilience provides an essential foundation for employees to adapt, innovate, and maintain productivity amid technological disruptions and dynamic changes. However, this study emphasizes that without adequate organizational support, such capacity is insufficient; therefore, organizations need to create a supportive environment.

This concept aligns with the Job Demands–Resources (JD–R) model, which posits that job resources, such as POS, become increasingly critical as job demands rise. In other words, when digital resilience is high (as a form of personal job resource), POS—as an organizational job resource—amplifies overall employee engagement and performance.

Similar findings have been reported in the context of resilience and performance. A study conducted in higher education institutions in India revealed that organizational resilience could improve performance through the mediation of POS. This finding demonstrates that organizational support enables resilience—both at the individual and collective levels—to translate into improved performance. In the broader literature, POS has been shown to significantly strengthen the relationship between organizational support and positive work outcomes—such as increased commitment, in-role and extra-role performance, and adaptive behaviors. This occurs because POS fosters a sense of reciprocal obligation and positive identification of individuals with the organization.

The practical implication of these findings is that DR-strengthening programs (such as digital training, skills development, and work flexibility) should be integrated with appropriate support strategies—including channels for career advancement, essential tools for digital work, and ongoing training when necessary. Such improvements, in both hard and soft workplace environments, aim to stimulate employees' digital resilience, enabling them to become more effective in enhancing performance.

CONCLUSION

This integrated approach not only reduces technical skill deficiencies but also significantly improves the speed and quality of work performed per unit of time. Based on OST research, digital organizations now routinely measure POS alongside engagement metrics and retention rates. This approach enables

organizations to monitor the effects of implemented programs or make necessary adjustments quickly.

In the context of digital enterprises, POS functions as a strategic instrument—not merely an HR policy—because it transforms practical support (tools, training, and policies) into initiative, commitment, and proactive behavior that directly enhances productivity. Measured investments in organizational support—including reliable technology, supportive leadership, and clear professional growth pathways—yield substantial returns in productivity, creativity, and the retention of valuable employees. Both foundational and meta-analytic references provide a strong basis for responsible intervention planning. Research findings by Chen SH (2018) indicate that Perceived Organizational Support (POS) acts as a strengthening factor (moderator) that enhances the effect of Digital Resilience (DR) on Employee Performance (EP). Digital resilience provides an essential foundation for employees to adapt, innovate, and maintain productivity amid technological disruptions and dynamic changes. However, this study emphasizes that without adequate organizational support, such capacity is insufficient; therefore, organizations need to create a supportive environment.

This concept is in line with the Job Demands–Resources (JD–R) model, which posits that job resources, such as POS, become more critical when demands increase. In other words, when digital resilience is high (as a form of personal job resource), POS—as an organizational job resource—amplifies overall employee engagement and performance.

Similar findings have been reported in the context of resilience and performance. A study conducted in higher education institutions in India revealed that organizational resilience could improve performance through the mediation of POS. This finding demonstrates that organizational support enables resilience—both at the individual and collective levels—to translate into better performance. In the broader literature, POS has been shown to significantly strengthen the relationship between organizational support and positive work outcomes—such as enhanced commitment, in-role and extra-role performance, and adaptive behaviors. This occurs because POS creates a sense of reciprocal obligation and positive identification of individuals with the organization. The practical implication of these findings is that DR-strengthening programs (such as digital training, skills development, and work flexibility) need to be integrated with appropriate support strategies—including channels for advancement, necessary tools for digital work, and ongoing training if needed. Such improvements in both hard and soft workplace environments aim to stimulate employees' digital resilience, enabling them to be more effective in enhancing performance.

REFERENCES

Al_Kasasbeh, O. (2024). Integrating technological innovations and human resource

practices for enhancing organizational performance and employee well-being in developing countries. *ORGANIZE: Journal of Economics, Management and Finance*, 3(2), 101–113.

Bennett, A. A., Campion, E. D., Keeler, K. R., & Keener, S. K. (2020). Videoconference fatigue? Exploring changes in fatigue after videoconference meetings during COVID-19. *Journal of Applied Psychology*, 105(10), 1136–1147. <https://doi.org/10.1037/apl0000847>

Chong, S., Huang, Y., & Chang, C.-H. (2022). Supporting remote workers: The role of organizational support and digital resilience. *Journal of Business and Psychology*, 37, 125–140.

Henderson, L. S., Stackman, R. W., & Lindekilde, L. (2022). Digital resilience: A capability-based perspective. *Information Systems Journal*, 32(2), 211–243.

Huang, J. L., Ryan, A. M., Zabel, K. L., & Palmer, A. (2014). Personality and adaptive performance at work: A meta-analytic investigation. *Journal of Applied Psychology*, 99(1), 162–179.

Kao, K. Y., Spitzmueller, C., Lin, M. T., & Yu, L. C. (2021). Digital transformation and training: The role of training in building digital self-efficacy and resilience. *Journal of Applied Psychology*, 106(6), 857–871.

Kurtessis, J. N., Eisenberger, R., Ford, M. T., Buffardi, L. C., Stewart, K. A., & Adis, C. S. (2017). Perceived organizational support: A meta-analytic evaluation of organizational support theory. *Journal of Management*, 43(6), 1854–1884.

Mandung, F., Sahari, S., & Amra, W. (2025). Understanding how companies utilize technological innovation for competitive advantage: A qualitative inquiry. *Golden Ratio of Data in Summary*, 5(1), 144–154.

Maruping, L. M., Magni, M., & Crisp, C. B. (2017). A contextualized approach to investigating the role of information and communication technologies in coordination. *MIS Quarterly*, 41(1), 123–144.

Musa, S., & Enggarsyah, D. T. P. (2025). Absorptive capacity, organizational creativity, organizational agility, organizational resilience and competitive advantage in disruptive environments. *Journal of Strategy and Management*, 18(2), 303–325.

Newman, A., Nielsen, I., Smyth, R., & Hirst, G. (2019). Perceived organizational support and employee well-being: The mediating role of psychological capital and work engagement. *Human Resource Management Journal*, 29(3), 427–445.

Pang, M. S., Lee, G., & DeLone, W. (2021). IT resilience: Toward a multidisciplinary understanding. *MIS Quarterly Executive*, 20(1), 1–13.

Shao, Z., Wang, T., Wang, S., & Luo, J. (2020). Technostress and the continuous use of mobile devices: The role of mindful use and techno-overload. *Information Systems Journal*, 30(6), 1125–1152.

Shoss, M. K., Eisenberger, R., Restubog, S. L. D., & Zagenczyk, T. J. (2013). Digital Self-Efficacy and Organizational Support: A Pathway to Digital Resilience and Performance

Blaming the organization for abusive supervision: The roles of perceived organizational support and supervisor's organizational embodiment. *Journal of Applied Psychology*, 98(1), 158–168.

Sidik, H. M., Raharjo, E. S., & Anggiani, S. (2024). Organizational design and competencies as sources of sustainable competitive advantage in a rapidly changing technological environment. *Jurnal Pendidikan Indonesia*, 5(12).

Tams, S., Grover, V., & Thatcher, J. (2014). Modern information technology in an old workforce: Toward a strategic research agenda. *The Journal of Strategic Information Systems*, 23(4), 284–304.

Tarafdar, M., Cooper, C. L., & Stich, J. (2019). The technostress trifecta—Techno eustress, techno distress and design: Theoretical directions and an agenda for research. *Information Systems Journal*, 29(1), 6–42.

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. *The Journal of Strategic Information Systems*, 28(2), 118–144.

Wang, G., Mansor, Z. D., & Leong, Y. C. (2024). Fostering digital excellence: A multidimensional exploration of the collective effects of technological adaptability, employee competitiveness, and employee dynamic capabilities on employee digital performance in Chinese SMEs. *International Journal of Social Science Research*, 12(1), 116.