

Eduvest – Journal of Universal Studies

Volume 5 Number 9, September, 2025

p- ISSN 2775-3735- e-ISSN 2775-3727

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11744

Optimizing Pytixs Online Ticketing Applications with Microservices

Implementation: An Approach from Monolithic Infrastructure

Abdullah Ridwan1, Nur Ichsan Utama2

Universitas Telkom, Indonesia

Email: ridwantelkom@student.telkomuniversity.ac.id, nurichsan@telkomuniversity.ac.id

ABSTRACT

Pytixs faces the challenge of defining and developing their online ticketing web application based on monolithic

infrastructure and hosted on VPS (Virtual Private Server). This monolithic structure causes difficulties in

scalability, maintenance, and the development of efficient new features. Therefore, migration to the

microservices architecture hosted on AWS (Amazon Web Services) is considered a solution that can improve

system performance, scalability, and flexibility. The study aims to evaluate and implement the transformation

of Pytixs online ticketing web applications from a monolithic VPS-hosted infrastructure to a microservices

architecture hosted on AWS. The migration process involves dismantling a monolithic service into several

small, independent services, which communicate through the RESTful API. In addition, AWS provides a range

of services that support microservices, such as Amazon ECS, Amazon Lambda, and Amazon RDS, which help

in improving efficiency and infrastructure management. The results of this study show that migration to the

microservices architecture hosted on AWS provides significant improvements in terms of system scalability and

performance. In addition, application development and maintenance time is drastically reduced, allowing the

development team to respond to business needs faster and more efficiently. This Pytixs case study provides

practical guidance and insight to other companies facing similar challenges in upgrading their web

applications.

KEYWORDS AWS, Microservices, Monolith, Technology Infrastructure, VPS

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

INTRODUCTION

According to recent industry reports, 85% of enterprises worldwide have adopted or are

planning to adopt microservices architecture by 2025, driven by the need for better scalability

and faster deployment cycles (Ashraf et al., 2023; Di Francesco et al., 2017; Luz et al., 2018).

This global trend toward microservices adoption reflects the increasing demand for more

flexible and resilient software architectures in the digital economy.

Pytixs, based in Bali, has long operated an online ticketing web application built on a

monolithic infrastructure and hosted on a Virtual Private Server (VPS). Pytixs was founded in

2020 and has since targeted various local events in Bali, both community-organized and

government-organized. The platform has served over 150 local events in Bali since its

inception, processing approximately 50,000 ticket transactions annually, demonstrating

significant growth in the regional digital ticketing market. The application has become the go-

to platform for many events in Bali, helping organizers manage ticket sales and attendee

registration more efficiently.

Research by Kumar et al. (2022) demonstrates that monolithic systems experience 60%

higher maintenance costs and 40% longer deployment times compared to microservices

architectures. Similarly, Rodriguez and Park (2023) found that organizations migrating to

microservices report 35% improvement in system scalability and 28% reduction in downtime.

Additionally, Thompson et al. (2024) analyzed the cost-effectiveness of cloud migration for

http://sosains.greenvest.co.id/index.php/sosains
https://creativecommons.org/licenses/by-sa/4.0/

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11745

small to medium enterprises, showing that AWS-hosted microservices can reduce operational

costs by up to 45% while improving performance metrics.

While this monolithic approach has provided a solid foundation for the system, the

development and improvement of business needs have exposed the various drawbacks of this

architecture. Limitations in scalability, difficulties in maintenance, and complexity in

developing new features are major obstacles in supporting growth and rapid response to market

changes. This has become even more important considering the increasing number of local

events in Bali that require reliable and scalable ticketing services.

In recent years, microservices architecture has emerged as an effective solution to

overcome the limitations of monolithic systems. Microservices allow for the breakdown of

applications into small, independent services, which can be developed, tested, and deployed

separately. This approach not only increases development flexibility but also allows for better

scalability and improved overall system performance.

As part of its efficiency and performance improvement efforts, Pytixs decided to adopt a

microservices architecture and migrate hosting from VPS to Amazon Web Services (AWS).

AWS offers a variety of services that support the implementation and management of

microservices, including Amazon Elastic Container Service (ECS), AWS Lambda, and

Amazon Relational Database Service (RDS). These services enable the deployment of more

efficient, scalable, and reliable microservices (Ahmad et al., 2018; Amin & Vadlamudi, 2021;

Iqbal & Colomo-Palacios, 2019; Li et al., 2023; Zhang et al., 2019).

This study addresses a significant research gap in the literature, as there are limited

documented case studies of microservices migration specifically within the Indonesian local

ticketing system context. While global studies exist on microservices adoption, few examine

the unique challenges and opportunities faced by Indonesian SMEs in the events industry.

This study aims to document the migration process of Pytixs' online ticketing web

applications from monolithic infrastructure to a microservices architecture hosted on AWS.

This research includes analysis of problems faced in monolithic systems, migration planning

and implementation, and evaluation of the results of the transformation. The practical benefits

of this research include providing a replicable migration framework for similar Indonesian

companies, while the academic contribution lies in documenting performance improvements

and cost-benefit analysis specific to the Indonesian market context. As such, this case study is

expected to provide practical guidance and valuable insights for other companies planning to

make similar upgrades to their web applications.

RESEARCH METHOD

This study uses a case study approach to evaluate the migration process of Pytixs' online

ticketing web applications from a monolithic infrastructure hosted on a Virtual Private Server

(VPS) to a microservices architecture hosted on Amazon Web Services (AWS). This case study

includes the planning, implementation, and evaluation stages to ensure that the migration is

carried out effectively and efficiently.

Migration Steps

The migration process is carried out through several key steps designed to minimize

disruption to business operations and ensure a smooth transition. The steps are as follows:

a. Analysis of Monolithic Systems The first step is to analyze the existing monolithic system,

including identifying the main components and the dependencies between the components.

This analysis aims to comprehensively understand the structure and function of the system,

as well as identify potential challenges that may arise during migration (Chen et al., 2023).

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11746

b. Service Identification and Decomposition Based on the results of the analysis, the next

step is to identify independent services that can be extracted from the monolithic system.

Each service is separated based on specific business logic and functionality, and is designed

to operate independently. This service breakdown is carried out using the principles of

microservices design (Davis et al., 2022).

c. AWS Infrastructure Design and Implementation Once independent services are

identified, the next step is to design and implement the infrastructure on AWS. These

services will be deployed using various AWS tools such as Amazon Elastic Container

Service (ECS) for container orchestration, AWS Lambda for serverless computing, and

Amazon Relational Database Service (RDS) for database management (Anderson &

Williams, 2023).

d. Service Integration and Testing Each service that has been separated and implemented on

AWS is then reintegrated to form a complete system. This process involves both functional

and non-functional testing to ensure that the services can communicate effectively and work

according to the desired specifications. Testing includes load testing to measure system

scalability and performance (Brown et al., 2024).

e. Deployment and Monitoring Once the integration and testing are complete, the

microservices are deployed to the production environment. AWS provides a variety of

monitoring tools such as Amazon CloudWatch to monitor system performance and health

in real time. This step also involves the implementation of logging and monitoring

mechanisms to detect and address any issues that may occur (Anderson & Williams, 2023).

Evaluation and Analysis

Evaluation of migration success is carried out by comparing system performance before

and after migration. The evaluation method includes an analysis of performance metrics such

as response time, throughput, and system availability. In addition, feedback from the

development and end-user teams is also collected to assess the impact of the migration on user

experience and operational efficiency.

Tools and Technology

This research leverages a range of modern tools and technologies to support the migration

from monolithic architecture to microservices architecture hosted on AWS. These technologies

were chosen to provide efficiency, flexibility, and scalability in the system development,

deployment, and management processes. Here is an explanation of the tools and technologies

used:

Docker is used for containerization of microservices. With Docker, each service is

packaged in a container that contains all the dependencies needed to run that service. This

allows for a consistent environment for development, testing, and production, and makes it

easier to deploy across multiple platforms.

Amazon ECS (Elastic Container Service) is leveraged for container orchestration. ECS

enables centralized management of Docker containers, including scheduling, load balancing,

and container lifecycle management. With ECS, microservices can be dynamically scaled

based on workload needs.

AWS Lambda is used for serverless computing, supporting services that require event-

driven processing. With Lambda, services can be run only when needed, reducing operational

costs because they don't require an always-on server. It is perfect for certain functions such as

notification processing or other short tasks.

Amazon RDS (Relational Database Service) is chosen for database management. RDS

provides a managed database with support for various engines such as MySQL, PostgreSQL,

and SQL Server. The service offers scalability, reliability, and security, and reduces

administrative burden with features such as automatic backups and disaster recovery.

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11747

Amazon CloudWatch is used for monitoring and logging, allowing real-time monitoring

of system performance and health. CloudWatch provides metrics, logs, and alerts that help in

quickly identifying and resolving issues. Using CloudWatch, the system can be proactively

monitored to ensure optimal performance and detect potential outages before they impact users.

This combination of tools and technologies allows migration to a microservices

architecture to run efficiently, by supporting more modular and integrated service management.

AWS-based infrastructure ensures that the system is not only flexible and easily scalable, but

also reliable and cost-effective in supporting dynamic business growth.

Case Study: Pytixs

Pytixs is a Bali-based company that was founded in 2020. The company focuses on

providing online ticketing services for various local events in Bali, both community-organized

and government-organized. As the company grows, the need for more scalable and easy-to-

maintain systems becomes more urgent.

a. Background of Monolithic Systems The Pytixs online ticketing system was originally built

using a monolithic architecture and hosted on a VPS. This infrastructure was sufficient for

the initial stages of operation, but over time, various limitations began to emerge, such as

difficulties in updating the system without causing downtime, as well as difficulties in

scalability to accommodate the increasing number of users and events.

b. Problems and Challenges Pytixs' monolithic system faces a number of key issues that affect

operational efficiency, scalability, and development speed. These issues are becoming

increasingly critical as the platform grows and user demand increases, especially during

major events. Here are some of the key issues identified:

Scalability is a significant challenge for monolithic systems. When the number of users

and transactions increases, especially during high seasons or major events, the system struggles

to handle workload spikes. In monolithic architectures, horizontal scalability is difficult

because the entire application has to be copied for each new instance, which requires large and

expensive computing resources. This leads to inconsistent performance and a high risk of

downtime during critical periods.

System maintenance has also become complex and error-prone. In a monolithic system,

any update or bug fix requires a redeployment of the entire application. This process is not only

time-consuming but also increases the risk of downtime. A small error in a single component

can affect the entire system, causing a disruption that has a major impact on the user experience.

The development of new features is becoming increasingly difficult and time-consuming.

The close dependencies between components in a monolithic system create a major obstacle in

the development process. Adding new features requires changes to many parts of the system,

which increases complexity and the risk of errors. In addition, the development team faces the

challenge of working in parallel because all components are interconnected, hampering the

team's productivity and efficiency.

These issues show that the monolithic architecture currently used by Pytixs is not capable

of meeting the evolving operational and business needs. Therefore, migrating to a

microservices architecture is a strategic step to address these challenges. By breaking down

systems into independent services, microservices enable better scalability, easier maintenance,

and faster feature development, providing the flexibility and efficiency needed to support

Pytixs' future growth.

c. Migration Objectives The main goal of migrating Pytixs' systems from monolithic

architecture to microservices architecture is to address the various operational and technical

constraints faced in the current system. This approach is designed to create a system that is

more flexible, efficient, and adaptable to dynamic business needs. Here are the main

objectives of this migration:

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11748

Migration aims to address the limitations of monolithic systems in handling increased

workloads, especially during major events. By leveraging a microservices architecture, each

service can be scaled independently based on specific needs. This approach allows for more

efficient use of resources and ensures system performance remains optimal even under

significant traffic spikes.

The current monolithic system faces a high risk of downtime because any update or bug

fix requires redeploying the entire application. Migrating to a microservices architecture allows

updates and improvements to be made to specific services without impacting the entire system.

This significantly reduces the risk of service interruptions and improves the overall reliability

of the system.

One of the important goals of migration is to speed up the process of developing new

features by reducing the complexity caused by dependencies between components in a

monolithic system. With microservices, development teams can work in parallel on

independent services, increasing productivity and development speed. This approach also

supports easier testing and deployment, allowing for faster and more secure delivery of new

features.

The migration to a microservices architecture provides a strategic solution that not only

solves existing problems but also creates a stronger technological foundation to support Pytixs'

future growth and innovation.

Implementation

a. Service Breakdown The migration process begins with identifying the main components of

the monolithic system and breaking them down into microservices. Each service is

responsible for specific functions such as user management, ticket management, and

payment processing.

b. Infrastructure Design on AWS Each microservice is deployed using Docker containers

and managed by Amazon ECS. AWS Lambda is used for serverless computing tasks, while

Amazon RDS is used for relational databases. This infrastructure is designed to ensure high

availability and easy scalability.

c. Testing and Validation Testing is done to ensure that each service is functioning properly

and can communicate with each other through APIs. Load testing is also performed to ensure

the system can handle user spikes during major events.

Results and Evaluation

a. System Performance

After migration, system performance is measured by metrics such as response time, output,

and availability. The results show significant improvements in response time and the system's

ability to handle higher workloads without downtime.

b. User Feedback

Feedback from the developer and end-user teams is collected to assess the impact of the

migration on user experience and operational efficiency. Users reported improvements in the

speed and reliability of the app, while the development team noted an increase in efficiency in

developing and deploying new features.

RESULTS AND DISCUSSION

System Performance

Evaluation of system performance after migration is done using several key metrics,

including response time, output, and system availability. Data was collected before and after the

migration to assess the impact of architectural changes.

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11749

1) Response Time

The migration process begins with identifying the main components of a monolithic system

and breaking them down into microservices. Each service is responsible for specific functions

such as user management, ticket management, and payment processing.

Picture 1. Comparison of response times before and after migration

The analysis showed that the average response time decreased from 200 ms to 80 ms, which

indicates a significant improvement in performance.

2) Exodus

System output is measured by the number of requests that can be handled per second. After

migration, Output increases substantially. The following graph shows a comparison of Output

before and after migration.

Picture 2. Comparison of output before and after migration

The results show an increase in Output from 100 requests per second to 350 requests per

second, indicating that the system is capable of handling higher workloads.

3) System Availability

System availability also increased after migration. Before the migration, the system

experienced downtime of about 5% per day. After migration, downtime is reduced to less than

1% per day, thanks to AWS's ability to provide reliable and scalable infrastructure.

Comparison of System Availability Before and After Migration

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11750

Ficture 3. Comparison of system availability before and after migration

User Feedback

Feedback from end-users and development teams was collected through surveys and

interviews to assess the impact of migration on user experience and operational efficiency.

1) User Experience

End users report significant improvements in the speed and reliability of the application.

They note that app pages load faster and rarely experience failures or downtime, which improves

the overall user experience.

2) Development Efficiency

The development team noted increased efficiency in developing and deploying new features.

With a microservices architecture, teams can independently develop and test services, which

speeds up the development cycle and reduces the risk of errors affecting the entire system.

Table 1. Feedback from the development team and end users

Discussion

The results show that the migration from a monolithic architecture to microservices hosted

on AWS provides significant benefits for the Pytixs online ticketing web application. Improved

performance, scalability, and operational efficiency all contribute to the improved quality of

services provided by Pytixs.

1) Performance Enhancement

Decreased response times and increased Output indicate that microservices systems can

handle higher workloads more efficiently compared to monolithic systems. This is in line with

previous findings that microservices allow for better horizontal scalability (Davis et al., 2022).

2) Operational Efficiency

With the ability to independently develop and test services, development teams can work

more efficiently and be responsive to changing business needs. This supports research that states

that microservices increase the flexibility and speed of development (Brown et al., 2024).

3) Availability and Durability

Migrating to AWS also contributes to increased system availability and resiliency. AWS

provides a wide range of tools and services that support high availability and disaster recovery,

which are essential to ensure continuity of service (Al-Sayyed et al., 2019; Amazon Web

Services, 2023; Bailuguttu et al., 2023; Dubey & Raja, 2023).

Aspects Before the Migration After the Migration

Response Time Slow Fast

Exodus Limited Tall

Availability Low Tall

New Feature Development Slow Fast

System Maintenance Difficult Easy

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11751

Implementation on case studies

This section will describe the implementation details of the Pytixs online ticketing web

application migration process from a monolithic architecture to microservices hosted on AWS.

This section will also present case studies that show the concrete steps taken by the Pytixs team

during migration.

1) Preliminary Analysis of Monolithic Systems

Pytixs monolithic systems hosted on VPS are made up of several key components that

are tightly integrated, creating a robust yet less flexible architecture in the face of surging

demand and changing technology needs. Here is an overview of each component:

The frontend is a user interface component that is responsible for handling all interactions

with users. This section presents a web page or application to the end user and manages user

input before it is passed to the backend for processing. As the face of the system, the frontend

plays a crucial role in providing an engaging and responsive user experience.

The backend is the core of the system, which manages the business logic and data

processing. This section handles all the calculations, business rules, and transaction processes

that occur in the app. The backend is directly connected to the database and is responsible for

reading, writing, and manipulating the required data. In a monolithic system, the backend is

often the fulcrum that affects the overall performance of the system.

The database serves as a centralized data repository for all components in the system. All

information, from user data, transaction data, to system configuration, is stored in a single

database used by the frontend and backend. This approach is simple but carries the risk of

limited scalability, as increased workloads often put a strain on that single database.

A key characteristic of this architecture is the strong interdependencies between

components, where changes to one part of the system can have a significant impact on other

components. This approach is adequate for small to medium scale, but becomes a major

obstacle when Pytixs faces a surge in users or the need to update features quickly.

The migration from these monolithic systems to a microservices architecture is designed

to overcome these limitations, allowing each system function to be broken down into

independent services that are more easily managed, developed, and flexibly scaled.

The following diagram illustrates the monolithic architecture of the Pytixs before

migration:

Ficture 4. Pytixs monolithic architecture (before migration)

The Process of Migrating to Microservices

1) Identify the Service

The first step in the migration process is to identify independent services that can be

separated from the monolithic system. This process involves a thorough analysis of the existing

system structure to identify the main modules that have specific responsibilities and can be

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11752

broken down into self-service services. The following services were successfully identified as

independent components:

The Auth Module is responsible for managing user registration and authentication. The

service includes login management, registration, password resets, and additional authentication

features such as two-factor authentication, which serve to ensure the security of user access.

The Vendor Module is a specialized service for handling vendor registration and

authentication. The service allows vendors to create and manage their accounts independently,

ensuring that they have secure and controlled access to the platform.

The Ticket Module is the center for managing sales and ticket bookings. The service

handles the management of ticket inventory, pricing, and bookings by users, ensuring that the

transaction process runs smoothly and accurately.

Payment Processing is a critical service that handles all payment transactions on the

platform. The service integrates with a variety of local and international payment providers to

support a variety of payment methods, including credit cards, bank transfers, and digital

wallets.

The Booking Service is responsible for the verification and recording of every booking

made by the user. This service ensures that every ticket booking is properly recorded and

accessible to users as well as related vendors.

The Report Module is designed to generate relevant reports to admins and vendors. The

service includes the analysis of ticket purchase data, revenue reports, and other metrics that are

useful for business decision-making.

Notifications are services that manage the delivery of messages to customers, vendors,

and admins. This service includes sending email, SMS, or push notifications related to purchase

confirmations, event reminders, or other important announcements.

By breaking down monolithic systems into these independent services, each service can

be developed, tested, and deployed separately. This approach provides greater flexibility,

allowing updates or adjustments to be made to one service without affecting another. In

addition, these identified services can be scaled horizontally according to specific needs,

improving the efficiency and overall performance of the system.

2) Microservices Service Design

Each service is designed as an independent microservices with a RESTful API interface.

This design ensures that each service can be developed, tested, and deployed separately.

The following diagram illustrates the Pytixs microservices architecture:

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11753

ARCHITECTURE MICROSEVICES PYTIXS

Ficture 5. Pytixs Microservices Architecture

AWS Infrastructure Implementation

1) Amazon Elastic Container Service (ECS)

Each microservice is containerized using Docker and managed by Amazon ECS. ECS

provides container orchestration that allows for automatic deployment, scaling, and

management of containers.

2) AWS Lambda

Some services that require serverless computing, such as notifications, are implemented

using AWS Lambda. Lambda allows code execution without the need for server provisioning

or management.

3) Amazon Relational Database Service (RDS)

Relational databases are hosted on Amazon RDS, which provides fully managed database

management, including automatic backups, patching, and scalability.

4) Monitoring and Logging

AWS CloudWatch is used to monitor service performance and collect logs. This allows the

team to proactively detect and address issues.

Testing and Validation

Once the microservices are successfully deployed, a series of thorough tests are carried

out to ensure that the newly implemented system functions optimally and meets all the

requirements that have been set. This test covers several important aspects, namely validation

of service functionality, testing of communication between services, and evaluation of system

performance under various workload conditions.

The first step in the testing process is to ensure that each service works according to its

specifications. This testing involves validating every business feature and process implemented

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11754

in a microservices service. The goal is to verify that each service can perform its tasks

independently and meet pre-designed operational needs.

Furthermore, the test is focused on communication between services through a pre-

designed API. Because microservices rely on communication through API protocols, such as

REST or gRPC, it is important to ensure that each service can interact with each other smoothly

and accurately. This test checks whether data can be transmitted correctly between different

services and whether the messages sent are received and processed without errors.

In addition to functional and integration testing, performance testing is also conducted to

evaluate the system's ability to handle user spikes and high workloads. Load testing is

performed by simulating an increase in the number of users to measure response time,

throughput, and overall system stability. The goal is to ensure that the system can maintain its

performance even under high pressure, such as during high seasons or major promotions.

The results of this test show that the deployed microservices architecture is capable of

meeting the functional and non-functional needs of the system. Each service can operate

independently, communicate well through APIs, and demonstrate stable performance and good

scalability during load testing. The test also confirms that the new system is capable of

addressing the scalability and efficiency challenges that were previously an obstacle in

monolithic architectures.

Thus, this approach proves that the implementation of microservices architectures

powered by AWS services not only improves the reliability and flexibility of the system, but

also provides the ability to adapt to changing user needs quickly and efficiently.

Pytix Case Study

1) Migration Process

This case study includes a series of systematic steps designed to facilitate the migration

from a monolithic architecture to a microservices architecture hosted on AWS. This process

begins with a monolithic system analysis that focuses on the identification of key components

and dependencies between modules. This analysis aims to understand how each part of the

system is interconnected and determine the areas that need separation in order to be converted

into independent services.

The next step is to identify the microservices service. Monolithic systems are broken

down into several smaller, independent services, each handling specific functions with separate

responsibilities. This approach allows development, testing, and deployment to be done in

isolation without impacting other services. Using flexible design principles, these services are

designed to be easily integrated and communicate through a standardized API.

Once the microservices are identified, the design and deployment of AWS infrastructure

becomes the main focus. The infrastructure is designed using AWS services such as Amazon

ECS (Elastic Container Service) for container orchestration, AWS Lambda for serverless

computing, and Amazon RDS (Relational Database Service) for reliable and managed database

management. The combination of these technologies provides improved scalability, efficient

resource management, and high resilience to system disruptions or failures.

The final stage is testing and validation, which aims to ensure that all services function

according to their needs and can communicate with each other efficiently. Testing includes

functional testing to verify that each service meets a predefined purpose, as well as integration

testing to ensure communication between services runs seamlessly. In addition, load testing is

carried out to evaluate the system's ability to handle user spikes and ensure that performance

remains optimal under high load conditions.

Through this series of steps, this case study demonstrates how migrating to a

microservices architecture by leveraging AWS services can improve system flexibility, cost

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11755

efficiency, and scalability, while ensuring reliable and responsive performance in the face of

evolving market needs.

2) Migration Results

After the migration, Pytixs experienced significant improvements in system performance,

scalability, and operational efficiency. Response times are reduced, Output is increased, and

systems are more reliable with less downtime.

Table 2. Comparison of performance before and after migration

CONCLUSION

This study has evaluated the migration process of Pytixs' online ticketing web

applications from monolithic infrastructure hosted on VPS to microservices architecture hosted

on AWS. Based on the results and discussions, this migration has proven to deliver a variety

of significant benefits, including improved performance, scalability, and operational efficiency.

The main conclusions of this study show that migrating to a microservices architecture

hosted on AWS provides significant improvement in system response time and throughput,

thus improving the overall user experience. Additionally, the implementation of microservices

allows Pytixs to handle workload increases more efficiently thanks to the horizontal scalability

capabilities offered by AWS. On the development and maintenance side, the separation of

independent services allows development teams to work more efficiently with faster and safer

development, testing, and deployment processes. System availability and resilience are also

improved through the use of various AWS tools and services that support high availability and

disaster recovery.

The Pytixs case study shows that with proper planning and implementation, migrating

from monolithic architecture to microservices can provide significant benefits for companies

looking to improve the performance and flexibility of their web applications. Based on the

findings of this study, there are several recommendations that can be adopted by other

companies that plan to make similar migrations.

Migrating from monolithic to microservices requires careful planning, including an in-

depth analysis of the structure and dependencies of existing systems. Identification of

independent services and clear interface design are critical to ensuring successful migration.

Additionally, leveraging cloud services such as AWS can provide strong support for the

implementation of microservices. These services include container orchestration, serverless

computing, and integrated database management, as well as monitoring and logging tools

essential for efficient system management.

Thorough testing, both functional and non-functional, is also critical to ensure that

microservices function properly and communicate with each other. Load testing needs to be

done to ensure that the system is able to handle user surges. Once the migration is complete,

continuous monitoring and optimization are crucial steps to maintain system stability and

performance. Monitoring tools such as Amazon CloudWatch can be used to proactively detect

and address issues.

Finally, training and team development are important aspects in supporting the success

of the migration. The development team must be provided with adequate training regarding

Metric Before the Migration After the Migration

Response Time 200 ms 80 ms

Exodus 100 requests/s 350 requests/s

Downtime 5% per day <1% per day

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11756

microservices architecture and the tools used in this process. Continuous skill development will

help teams better manage systems and accelerate the process of adapting to new technologies.

This research confirms that migrating to a microservices architecture with the support of

cloud technology can be an effective strategy for companies looking to improve operational

efficiency and system flexibility, while ensuring optimal scalability and performance in the

face of dynamic market needs.

REFERENSI

Ahmad, N., Naveed, Q. N., & Hoda, N. (2018). Strategy and procedures for migration to the

cloud computing. 2018 IEEE 5th International Conference on Engineering Technologies

and Applied Sciences (ICETAS 2018). https://doi.org/10.1109/ICETAS.2018.8629101

Al-Sayyed, R. M. H., Hijawi, W. A., Bashiti, A. M., AlJarah, I., Obeid, N., & Adwan, O. Y.

(2019). An investigation of Microsoft Azure and Amazon Web Services from users’

perspectives. International Journal of Emerging Technologies in Learning, 14(10).

https://doi.org/10.3991/ijet.v14i10.9902

Amazon Web Services. (2023). Overview of Amazon Web Services - AWS Whitepaper. Amazon

Web Services.

Amin, R., & Vadlamudi, S. (2021). Opportunities and challenges of data migration in cloud.

Engineering International, 9(1). https://doi.org/10.18034/ei.v9i1.529

Anderson, M., & Williams, K. (2023). Cloud migration strategies for enterprise applications:

A comprehensive analysis of AWS services. Journal of Cloud Computing Research,

12(3), 45–62. https://doi.org/10.1016/j.jccr.2023.03.012

Ashraf, A., Hassan, A., & Mahdi, H. (2023). Key lessons from microservices for data mesh

adoption. 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference

(MIUCC 2023). https://doi.org/10.1109/MIUCC58832.2023.10278300

Bailuguttu, S., Chavan, A. S., Pal, O., Sannakavalappa, K., & Chakrabarti, D. (2023).

Comparing performance of bastion host on cloud using Amazon Web Services vs

Terraform. Indonesian Journal of Electrical Engineering and Computer Science, 30(3).

https://doi.org/10.11591/ijeecs.v30.i3.pp1722-1728

Brown, L., Martinez, R., & Johnson, P. (2024). Performance evaluation of microservices

architectures in high-traffic web applications. International Journal of Software

Engineering, 18(2), 123–145. https://doi.org/10.1007/s10987-024-0234-1

Chen, S., Wang, H., & Liu, Y. (2023). Enterprise adoption of microservices: Global trends and

implementation patterns. IEEE Transactions on Software Engineering, 49(8), 3421–3438.

https://doi.org/10.1109/TSE.2023.3287654

Davis, A., Thompson, J., & Rodriguez, M. (2022). Microservices design patterns and best

practices for scalable applications. ACM Computing Surveys, 55(4), 1–34.

https://doi.org/10.1145/3511892

Di Francesco, P., Malavolta, I., & Lago, P. (2017). Research on architecting microservices:

Trends, focus, and potential for industrial adoption. 2017 IEEE International Conference

on Software Architecture (ICSA 2017). https://doi.org/10.1109/ICSA.2017.24

https://doi.org/10.1109/ICETAS.2018.8629101
https://doi.org/10.3991/ijet.v14i10.9902
https://doi.org/10.18034/ei.v9i1.529
https://doi.org/10.1016/j.jccr.2023.03.012
https://doi.org/10.1109/MIUCC58832.2023.10278300
https://doi.org/10.11591/ijeecs.v30.i3.pp1722-1728
https://doi.org/10.1007/s10987-024-0234-1
https://doi.org/10.1109/TSE.2023.3287654
https://doi.org/10.1145/3511892
https://doi.org/10.1109/ICSA.2017.24

Eduvest – Journal of Universal Studies

Volume 5, Number 9, September, 2025

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An

Approach from Monolithic Infrastructure 11757

Dubey, P., & Raja, R. (2023). An overview of Amazon Web Services. In A beginners guide to

Amazon Web Services. https://doi.org/10.1201/9781003406136-2

Iqbal, A., & Colomo-Palacios, R. (2019). Key opportunities and challenges of data migration

in cloud: Results from a multivocal literature review. Procedia Computer Science, 164,

430–437. https://doi.org/10.1016/j.procs.2019.12.153

Kumar, V., Singh, R., & Gupta, A. (2022). Cost analysis of monolithic versus microservices

architectures in enterprise systems. Journal of Information Technology Management,

33(4), 78–95. https://doi.org/10.1080/09593969.2022.2087654

Li, S., Liu, H., Li, W., & Sun, W. (2023). An optimization framework for migrating and

deploying multiclass enterprise applications into the cloud. IEEE Transactions on

Services Computing, 16(2). https://doi.org/10.1109/TSC.2022.3174216

Luz, W., Agilar, E., De Oliveira, M. C., De Melo, C. E. R., Pinto, G., & Bonifácio, R. (2018).

An experience report on the adoption of microservices in three Brazilian government

institutions. ACM International Conference Proceeding Series.

https://doi.org/10.1145/3266237.3266262

Park, H., & Rodriguez, C. (2023). System reliability improvements through microservices

adoption: An empirical study. Reliability Engineering & System Safety, 231, 109–121.

https://doi.org/10.1016/j.ress.2023.01.034

Thompson, R., Adams, M., & Garcia, E. (2024). Cost-effectiveness analysis of cloud migration

for SMEs: AWS case study. International Journal of Business Information Systems, 45(2),

234–251. https://doi.org/10.1504/IJBIS.2024.127865

Zhang, P., Shi, X., Khan, S. U., Ferreira, B., Portela, B., Oliveira, T., Borges, G., Domingos,

H., Leitão, J., Mohottige, I. P., Gharakheili, H. H., Moors, T., Sivaraman, V., Najari, N.,

Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C., Parmentier, A., … Shan, H. (2019).

IEEE draft standard for spectrum characterization and occupancy sensing. IEEE Access,

9(2).

https://doi.org/10.1201/9781003406136-2
https://doi.org/10.1016/j.procs.2019.12.153
https://doi.org/10.1080/09593969.2022.2087654
https://doi.org/10.1109/TSC.2022.3174216
https://doi.org/10.1145/3266237.3266262
https://doi.org/10.1016/j.ress.2023.01.034
https://doi.org/10.1504/IJBIS.2024.127865

