Eduvest — Journal of Universal Studies

.'F'; ed uve St Volume 5 Number 9, September, 2025
p- ISSN 2775-3735- e-ISSN 2775-3727

Optimizing Pytixs Online Ticketing Applications with Microservices
Implementation: An Approach from Monolithic Infrastructure

Abdullah Ridwan!, Nur Ichsan Utama?
Universitas Telkom, Indonesia
Email: ridwantelkom@student.telkomuniversity.ac.id, nurichsan@telkomuniversity.ac.id

ABSTRACT

Pytixs faces the challenge of defining and developing their online ticketing web application based on monolithic
infrastructure and hosted on VPS (Virtual Private Server). This monolithic structure causes difficulties in
scalability, maintenance, and the development of efficient new features. Therefore, migration to the
microservices architecture hosted on AWS (Amazon Web Services) is considered a solution that can improve
system performance, scalability, and flexibility. The study aims to evaluate and implement the transformation
of Pytixs online ticketing web applications from a monolithic VPS-hosted infrastructure to a microservices
architecture hosted on AWS. The migration process involves dismantling a monolithic service into several
small, independent services, which communicate through the RESTful API. In addition, AWS provides a range
of services that support microservices, such as Amazon ECS, Amazon Lambda, and Amazon RDS, which help
in improving efficiency and infrastructure management. The results of this study show that migration to the
microservices architecture hosted on AWS provides significant improvements in terms of system scalability and
performance. In addition, application development and maintenance time is drastically reduced, allowing the
development team to respond to business needs faster and more efficiently. This Pytixs case study provides
practical guidance and insight to other companies facing similar challenges in upgrading their web
applications.

KEYWORDS AWS, Microservices, Monolith, Technology Infrastructure, VPS

l@ @ @ ‘ This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

INTRODUCTION

According to recent industry reports, 85% of enterprises worldwide have adopted or are
planning to adopt microservices architecture by 2025, driven by the need for better scalability
and faster deployment cycles (Ashraf et al., 2023; Di Francesco et al., 2017; Luz et al., 2018).
This global trend toward microservices adoption reflects the increasing demand for more
flexible and resilient software architectures in the digital economy.

Pytixs, based in Bali, has long operated an online ticketing web application built on a
monolithic infrastructure and hosted on a Virtual Private Server (VPS). Pytixs was founded in
2020 and has since targeted various local events in Bali, both community-organized and
government-organized. The platform has served over 150 local events in Bali since its
inception, processing approximately 50,000 ticket transactions annually, demonstrating
significant growth in the regional digital ticketing market. The application has become the go-
to platform for many events in Bali, helping organizers manage ticket sales and attendee
registration more efficiently.

Research by Kumar et al. (2022) demonstrates that monolithic systems experience 60%
higher maintenance costs and 40% longer deployment times compared to microservices
architectures. Similarly, Rodriguez and Park (2023) found that organizations migrating to
microservices report 35% improvement in system scalability and 28% reduction in downtime.
Additionally, Thompson et al. (2024) analyzed the cost-effectiveness of cloud migration for

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11744


http://sosains.greenvest.co.id/index.php/sosains
https://creativecommons.org/licenses/by-sa/4.0/

Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

small to medium enterprises, showing that AWS-hosted microservices can reduce operational
costs by up to 45% while improving performance metrics.

While this monolithic approach has provided a solid foundation for the system, the
development and improvement of business needs have exposed the various drawbacks of this
architecture. Limitations in scalability, difficulties in maintenance, and complexity in
developing new features are major obstacles in supporting growth and rapid response to market
changes. This has become even more important considering the increasing number of local
events in Bali that require reliable and scalable ticketing services.

In recent years, microservices architecture has emerged as an effective solution to
overcome the limitations of monolithic systems. Microservices allow for the breakdown of
applications into small, independent services, which can be developed, tested, and deployed
separately. This approach not only increases development flexibility but also allows for better
scalability and improved overall system performance.

As part of its efficiency and performance improvement efforts, Pytixs decided to adopt a
microservices architecture and migrate hosting from VPS to Amazon Web Services (AWS).
AWS offers a variety of services that support the implementation and management of
microservices, including Amazon Elastic Container Service (ECS), AWS Lambda, and
Amazon Relational Database Service (RDS). These services enable the deployment of more
efficient, scalable, and reliable microservices (Ahmad et al., 2018; Amin & Vadlamudi, 2021;
Igbal & Colomo-Palacios, 2019; Li et al., 2023; Zhang et al., 2019).

This study addresses a significant research gap in the literature, as there are limited
documented case studies of microservices migration specifically within the Indonesian local
ticketing system context. While global studies exist on microservices adoption, few examine
the unique challenges and opportunities faced by Indonesian SMEs in the events industry.

This study aims to document the migration process of Pytixs' online ticketing web
applications from monolithic infrastructure to a microservices architecture hosted on AWS.
This research includes analysis of problems faced in monolithic systems, migration planning
and implementation, and evaluation of the results of the transformation. The practical benefits
of this research include providing a replicable migration framework for similar Indonesian
companies, while the academic contribution lies in documenting performance improvements
and cost-benefit analysis specific to the Indonesian market context. As such, this case study is
expected to provide practical guidance and valuable insights for other companies planning to
make similar upgrades to their web applications.

RESEARCH METHOD

This study uses a case study approach to evaluate the migration process of Pytixs' online
ticketing web applications from a monolithic infrastructure hosted on a Virtual Private Server
(VPS) to a microservices architecture hosted on Amazon Web Services (AWS). This case study
includes the planning, implementation, and evaluation stages to ensure that the migration is
carried out effectively and efficiently.

Migration Steps

The migration process is carried out through several key steps designed to minimize
disruption to business operations and ensure a smooth transition. The steps are as follows:

a. Analysis of Monolithic Systems The first step is to analyze the existing monolithic system,
including identifying the main components and the dependencies between the components.
This analysis aims to comprehensively understand the structure and function of the system,
as well as identify potential challenges that may arise during migration (Chen et al., 2023).

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11745



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

b. Service Identification and Decomposition Based on the results of the analysis, the next
step is to identify independent services that can be extracted from the monolithic system.
Each service is separated based on specific business logic and functionality, and is designed
to operate independently. This service breakdown is carried out using the principles of
microservices design (Davis et al., 2022).

c. AWS Infrastructure Design and Implementation Once independent services are
identified, the next step is to design and implement the infrastructure on AWS. These
services will be deployed using various AWS tools such as Amazon Elastic Container
Service (ECS) for container orchestration, AWS Lambda for serverless computing, and
Amazon Relational Database Service (RDS) for database management (Anderson &
Williams, 2023).

d. Service Integration and Testing Each service that has been separated and implemented on
AWS is then reintegrated to form a complete system. This process involves both functional
and non-functional testing to ensure that the services can communicate effectively and work
according to the desired specifications. Testing includes load testing to measure system
scalability and performance (Brown et al., 2024).

e. Deployment and Monitoring Once the integration and testing are complete, the
microservices are deployed to the production environment. AWS provides a variety of
monitoring tools such as Amazon CloudWatch to monitor system performance and health
in real time. This step also involves the implementation of logging and monitoring
mechanisms to detect and address any issues that may occur (Anderson & Williams, 2023).

Evaluation and Analysis

Evaluation of migration success is carried out by comparing system performance before
and after migration. The evaluation method includes an analysis of performance metrics such
as response time, throughput, and system availability. In addition, feedback from the
development and end-user teams is also collected to assess the impact of the migration on user
experience and operational efficiency.

Tools and Technology

This research leverages a range of modern tools and technologies to support the migration
from monolithic architecture to microservices architecture hosted on AWS. These technologies
were chosen to provide efficiency, flexibility, and scalability in the system development,
deployment, and management processes. Here is an explanation of the tools and technologies
used:

Docker is used for containerization of microservices. With Docker, each service is
packaged in a container that contains all the dependencies needed to run that service. This
allows for a consistent environment for development, testing, and production, and makes it
easier to deploy across multiple platforms.

Amazon ECS (Elastic Container Service) is leveraged for container orchestration. ECS
enables centralized management of Docker containers, including scheduling, load balancing,
and container lifecycle management. With ECS, microservices can be dynamically scaled
based on workload needs.

AWS Lambda is used for serverless computing, supporting services that require event-
driven processing. With Lambda, services can be run only when needed, reducing operational
costs because they don't require an always-on server. It is perfect for certain functions such as
notification processing or other short tasks.

Amazon RDS (Relational Database Service) is chosen for database management. RDS
provides a managed database with support for various engines such as MySQL, PostgreSQL,
and SQL Server. The service offers scalability, reliability, and security, and reduces
administrative burden with features such as automatic backups and disaster recovery.

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11746



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

Amazon CloudWatch is used for monitoring and logging, allowing real-time monitoring
of system performance and health. CloudWatch provides metrics, logs, and alerts that help in
quickly identifying and resolving issues. Using CloudWatch, the system can be proactively
monitored to ensure optimal performance and detect potential outages before they impact users.

This combination of tools and technologies allows migration to a microservices
architecture to run efficiently, by supporting more modular and integrated service management.
AWS-based infrastructure ensures that the system is not only flexible and easily scalable, but
also reliable and cost-effective in supporting dynamic business growth.

Case Study: Pytixs

Pytixs is a Bali-based company that was founded in 2020. The company focuses on
providing online ticketing services for various local events in Bali, both community-organized
and government-organized. As the company grows, the need for more scalable and easy-to-
maintain systems becomes more urgent.

a. Background of Monolithic Systems The Pytixs online ticketing system was originally built
using a monolithic architecture and hosted on a VPS. This infrastructure was sufficient for
the initial stages of operation, but over time, various limitations began to emerge, such as
difficulties in updating the system without causing downtime, as well as difficulties in
scalability to accommodate the increasing number of users and events.

b. Problems and Challenges Pytixs' monolithic system faces a number of key issues that affect
operational efficiency, scalability, and development speed. These issues are becoming
increasingly critical as the platform grows and user demand increases, especially during
major events. Here are some of the key issues identified:

Scalability is a significant challenge for monolithic systems. When the number of users
and transactions increases, especially during high seasons or major events, the system struggles
to handle workload spikes. In monolithic architectures, horizontal scalability is difficult
because the entire application has to be copied for each new instance, which requires large and
expensive computing resources. This leads to inconsistent performance and a high risk of
downtime during critical periods.

System maintenance has also become complex and error-prone. In a monolithic system,
any update or bug fix requires a redeployment of the entire application. This process is not only
time-consuming but also increases the risk of downtime. A small error in a single component
can affect the entire system, causing a disruption that has a major impact on the user experience.

The development of new features is becoming increasingly difficult and time-consuming.
The close dependencies between components in a monolithic system create a major obstacle in
the development process. Adding new features requires changes to many parts of the system,
which increases complexity and the risk of errors. In addition, the development team faces the
challenge of working in parallel because all components are interconnected, hampering the
team's productivity and efficiency.

These issues show that the monolithic architecture currently used by Pytixs is not capable
of meeting the evolving operational and business needs. Therefore, migrating to a
microservices architecture is a strategic step to address these challenges. By breaking down
systems into independent services, microservices enable better scalability, easier maintenance,
and faster feature development, providing the flexibility and efficiency needed to support
Pytixs' future growth.

c. Migration Objectives The main goal of migrating Pytixs' systems from monolithic
architecture to microservices architecture is to address the various operational and technical
constraints faced in the current system. This approach is designed to create a system that is
more flexible, efficient, and adaptable to dynamic business needs. Here are the main
objectives of this migration:

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11747



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

Migration aims to address the limitations of monolithic systems in handling increased
workloads, especially during major events. By leveraging a microservices architecture, each
service can be scaled independently based on specific needs. This approach allows for more
efficient use of resources and ensures system performance remains optimal even under
significant traffic spikes.

The current monolithic system faces a high risk of downtime because any update or bug
fix requires redeploying the entire application. Migrating to a microservices architecture allows
updates and improvements to be made to specific services without impacting the entire system.
This significantly reduces the risk of service interruptions and improves the overall reliability
of the system.

One of the important goals of migration is to speed up the process of developing new
features by reducing the complexity caused by dependencies between components in a
monolithic system. With microservices, development teams can work in parallel on
independent services, increasing productivity and development speed. This approach also
supports easier testing and deployment, allowing for faster and more secure delivery of new
features.

The migration to a microservices architecture provides a strategic solution that not only
solves existing problems but also creates a stronger technological foundation to support Pytixs'
future growth and innovation.

Implementation

a. Service Breakdown The migration process begins with identifying the main components of
the monolithic system and breaking them down into microservices. Each service is
responsible for specific functions such as user management, ticket management, and
payment processing.

b. Infrastructure Design on AWS Each microservice is deployed using Docker containers
and managed by Amazon ECS. AWS Lambda is used for serverless computing tasks, while
Amazon RDS is used for relational databases. This infrastructure is designed to ensure high
availability and easy scalability.

c. Testing and Validation Testing is done to ensure that each service is functioning properly
and can communicate with each other through APIs. Load testing is also performed to ensure
the system can handle user spikes during major events.

Results and Evaluation

a. System Performance

After migration, system performance is measured by metrics such as response time, output,
and availability. The results show significant improvements in response time and the system's
ability to handle higher workloads without downtime.

b. User Feedback

Feedback from the developer and end-user teams is collected to assess the impact of the
migration on user experience and operational efficiency. Users reported improvements in the
speed and reliability of the app, while the development team noted an increase in efficiency in
developing and deploying new features.

RESULTS AND DISCUSSION

System Performance

Evaluation of system performance after migration is done using several key metrics,
including response time, output, and system availability. Data was collected before and after the
migration to assess the impact of architectural changes.

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11748



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

1) Response Time

The migration process begins with identifying the main components of a monolithic system
and breaking them down into microservices. Each service is responsible for specific functions
such as user management, ticket management, and payment processing.

Picture 1. Comparison of response times before and after migration
The analysis showed that the average response time decreased from 200 ms to 80 ms, which
indicates a significant improvement in performance.
2) Exodus
System output is measured by the number of requests that can be handled per second. After
migration, Output increases substantially. The following graph shows a comparison of Output
before and after migration.

Pertiandingsn Throughput Pytixs Website

——— — = = =
> -

Picture 2. Comparison of output before and after migration
The results show an increase in Output from 100 requests per second to 350 requests per
second, indicating that the system is capable of handling higher workloads.
3) System Availability
System availability also increased after migration. Before the migration, the system
experienced downtime of about 5% per day. After migration, downtime is reduced to less than
1% per day, thanks to AWS's ability to provide reliable and scalable infrastructure.

Comparison of System Availability Before and After Migration

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11749



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

Ficture 3. Comparison of system availability before and after migration

User Feedback

Feedback from end-users and development teams was collected through surveys and
interviews to assess the impact of migration on user experience and operational efficiency.
1) User Experience

End users report significant improvements in the speed and reliability of the application.
They note that app pages load faster and rarely experience failures or downtime, which improves
the overall user experience.
2) Development Efficiency

The development team noted increased efficiency in developing and deploying new features.
With a microservices architecture, teams can independently develop and test services, which
speeds up the development cycle and reduces the risk of errors affecting the entire system.

Table 1. Feedback from the development team and end users

Aspects Before the Migration After the Migration
Response Time Slow Fast
Exodus Limited Tall
Availability Low Tall
New Feature Development Slow Fast
System Maintenance Difficult Easy

Discussion

The results show that the migration from a monolithic architecture to microservices hosted
on AWS provides significant benefits for the Pytixs online ticketing web application. Improved
performance, scalability, and operational efficiency all contribute to the improved quality of
services provided by Pytixs.
1) Performance Enhancement

Decreased response times and increased Output indicate that microservices systems can
handle higher workloads more efficiently compared to monolithic systems. This is in line with
previous findings that microservices allow for better horizontal scalability (Davis et al., 2022).
2) Operational Efficiency

With the ability to independently develop and test services, development teams can work
more efficiently and be responsive to changing business needs. This supports research that states
that microservices increase the flexibility and speed of development (Brown et al., 2024).
3) Availability and Durability

Migrating to AWS also contributes to increased system availability and resiliency. AWS
provides a wide range of tools and services that support high availability and disaster recovery,
which are essential to ensure continuity of service (Al-Sayyed et al., 2019; Amazon Web
Services, 2023; Bailuguttu et al., 2023; Dubey & Raja, 2023).

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11750



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

Implementation on case studies

This section will describe the implementation details of the Pytixs online ticketing web
application migration process from a monolithic architecture to microservices hosted on AWS.
This section will also present case studies that show the concrete steps taken by the Pytixs team
during migration.
1) Preliminary Analysis of Monolithic Systems

Pytixs monolithic systems hosted on VPS are made up of several key components that
are tightly integrated, creating a robust yet less flexible architecture in the face of surging
demand and changing technology needs. Here is an overview of each component:

The frontend is a user interface component that is responsible for handling all interactions
with users. This section presents a web page or application to the end user and manages user
input before it is passed to the backend for processing. As the face of the system, the frontend
plays a crucial role in providing an engaging and responsive user experience.

The backend is the core of the system, which manages the business logic and data
processing. This section handles all the calculations, business rules, and transaction processes
that occur in the app. The backend is directly connected to the database and is responsible for
reading, writing, and manipulating the required data. In a monolithic system, the backend is
often the fulcrum that affects the overall performance of the system.

The database serves as a centralized data repository for all components in the system. All
information, from user data, transaction data, to system configuration, is stored in a single
database used by the frontend and backend. This approach is simple but carries the risk of
limited scalability, as increased workloads often put a strain on that single database.

A key characteristic of this architecture is the strong interdependencies between
components, where changes to one part of the system can have a significant impact on other
components. This approach is adequate for small to medium scale, but becomes a major
obstacle when Pytixs faces a surge in users or the need to update features quickly.

The migration from these monolithic systems to a microservices architecture is designed
to overcome these limitations, allowing each system function to be broken down into
independent services that are more easily managed, developed, and flexibly scaled.

The following diagram illustrates the monolithic architecture of the Pytixs before
migration:

Fromend Backend

Ficture 4. Pytixs monolithic architecture (before migration)

The Process of Migrating to Microservices
1) Identify the Service

The first step in the migration process is to identify independent services that can be
separated from the monolithic system. This process involves a thorough analysis of the existing
system structure to identify the main modules that have specific responsibilities and can be

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11751



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

broken down into self-service services. The following services were successfully identified as
independent components:

The Auth Module is responsible for managing user registration and authentication. The
service includes login management, registration, password resets, and additional authentication
features such as two-factor authentication, which serve to ensure the security of user access.

The Vendor Module is a specialized service for handling vendor registration and
authentication. The service allows vendors to create and manage their accounts independently,
ensuring that they have secure and controlled access to the platform.

The Ticket Module is the center for managing sales and ticket bookings. The service
handles the management of ticket inventory, pricing, and bookings by users, ensuring that the
transaction process runs smoothly and accurately.

Payment Processing is a critical service that handles all payment transactions on the
platform. The service integrates with a variety of local and international payment providers to
support a variety of payment methods, including credit cards, bank transfers, and digital
wallets.

The Booking Service is responsible for the verification and recording of every booking
made by the user. This service ensures that every ticket booking is properly recorded and
accessible to users as well as related vendors.

The Report Module is designed to generate relevant reports to admins and vendors. The
service includes the analysis of ticket purchase data, revenue reports, and other metrics that are
useful for business decision-making.

Notifications are services that manage the delivery of messages to customers, vendors,
and admins. This service includes sending email, SMS, or push notifications related to purchase
confirmations, event reminders, or other important announcements.

By breaking down monolithic systems into these independent services, each service can
be developed, tested, and deployed separately. This approach provides greater flexibility,
allowing updates or adjustments to be made to one service without affecting another. In
addition, these identified services can be scaled horizontally according to specific needs,
improving the efficiency and overall performance of the system.

2) Microservices Service Design

Each service is designed as an independent microservices with a RESTful API interface.
This design ensures that each service can be developed, tested, and deployed separately.

The following diagram illustrates the Pytixs microservices architecture:

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11752



4)

Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

ARCHITECTURE MICROSEVICES PYTIXS

Ll

Ficture 5. Pytixs Microservices Architecture

AWS Infrastructure Implementation
1) Amazon Elastic Container Service (ECS)

Each microservice is containerized using Docker and managed by Amazon ECS. ECS
provides container orchestration that allows for automatic deployment, scaling, and
management of containers.

2) AWS Lambda

Some services that require serverless computing, such as notifications, are implemented
using AWS Lambda. Lambda allows code execution without the need for server provisioning
or management.

3) Amazon Relational Database Service (RDS)

Relational databases are hosted on Amazon RDS, which provides fully managed database
management, including automatic backups, patching, and scalability.
Monitoring and Logging

AWS CloudWatch is used to monitor service performance and collect logs. This allows the
team to proactively detect and address issues.

Testing and Validation

Once the microservices are successfully deployed, a series of thorough tests are carried
out to ensure that the newly implemented system functions optimally and meets all the
requirements that have been set. This test covers several important aspects, namely validation
of service functionality, testing of communication between services, and evaluation of system
performance under various workload conditions.

The first step in the testing process is to ensure that each service works according to its
specifications. This testing involves validating every business feature and process implemented

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11753



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

in a microservices service. The goal is to verify that each service can perform its tasks
independently and meet pre-designed operational needs.

Furthermore, the test is focused on communication between services through a pre-
designed API. Because microservices rely on communication through API protocols, such as
REST or gRPC, it is important to ensure that each service can interact with each other smoothly
and accurately. This test checks whether data can be transmitted correctly between different
services and whether the messages sent are received and processed without errors.

In addition to functional and integration testing, performance testing is also conducted to
evaluate the system's ability to handle user spikes and high workloads. Load testing is
performed by simulating an increase in the number of users to measure response time,
throughput, and overall system stability. The goal is to ensure that the system can maintain its
performance even under high pressure, such as during high seasons or major promotions.

The results of this test show that the deployed microservices architecture is capable of
meeting the functional and non-functional needs of the system. Each service can operate
independently, communicate well through APIs, and demonstrate stable performance and good
scalability during load testing. The test also confirms that the new system is capable of
addressing the scalability and efficiency challenges that were previously an obstacle in
monolithic architectures.

Thus, this approach proves that the implementation of microservices architectures
powered by AWS services not only improves the reliability and flexibility of the system, but
also provides the ability to adapt to changing user needs quickly and efficiently.

Pytix Case Study
1) Migration Process

This case study includes a series of systematic steps designed to facilitate the migration
from a monolithic architecture to a microservices architecture hosted on AWS. This process
begins with a monolithic system analysis that focuses on the identification of key components
and dependencies between modules. This analysis aims to understand how each part of the
system is interconnected and determine the areas that need separation in order to be converted
into independent services.

The next step is to identify the microservices service. Monolithic systems are broken
down into several smaller, independent services, each handling specific functions with separate
responsibilities. This approach allows development, testing, and deployment to be done in
isolation without impacting other services. Using flexible design principles, these services are
designed to be easily integrated and communicate through a standardized API.

Once the microservices are identified, the design and deployment of AWS infrastructure
becomes the main focus. The infrastructure is designed using AWS services such as Amazon
ECS (Elastic Container Service) for container orchestration, AWS Lambda for serverless
computing, and Amazon RDS (Relational Database Service) for reliable and managed database
management. The combination of these technologies provides improved scalability, efficient
resource management, and high resilience to system disruptions or failures.

The final stage is testing and validation, which aims to ensure that all services function
according to their needs and can communicate with each other efficiently. Testing includes
functional testing to verify that each service meets a predefined purpose, as well as integration
testing to ensure communication between services runs seamlessly. In addition, load testing is
carried out to evaluate the system's ability to handle user spikes and ensure that performance
remains optimal under high load conditions.

Through this series of steps, this case study demonstrates how migrating to a
microservices architecture by leveraging AWS services can improve system flexibility, cost

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11754



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

efficiency, and scalability, while ensuring reliable and responsive performance in the face of
evolving market needs.
2) Migration Results

After the migration, Pytixs experienced significant improvements in system performance,
scalability, and operational efficiency. Response times are reduced, Output is increased, and
systems are more reliable with less downtime.

Table 2. Comparison of performance before and after migration

Metric Before the Migration After the Migration
Response Time 200 ms 80 ms
Exodus 100 requests/s 350 requests/s
Downtime 5% per day <1% per day
CONCLUSION

This study has evaluated the migration process of Pytixs' online ticketing web
applications from monolithic infrastructure hosted on VPS to microservices architecture hosted
on AWS. Based on the results and discussions, this migration has proven to deliver a variety
of significant benefits, including improved performance, scalability, and operational efficiency.

The main conclusions of this study show that migrating to a microservices architecture
hosted on AWS provides significant improvement in system response time and throughput,
thus improving the overall user experience. Additionally, the implementation of microservices
allows Pytixs to handle workload increases more efficiently thanks to the horizontal scalability
capabilities offered by AWS. On the development and maintenance side, the separation of
independent services allows development teams to work more efficiently with faster and safer
development, testing, and deployment processes. System availability and resilience are also
improved through the use of various AWS tools and services that support high availability and
disaster recovery.

The Pytixs case study shows that with proper planning and implementation, migrating
from monolithic architecture to microservices can provide significant benefits for companies
looking to improve the performance and flexibility of their web applications. Based on the
findings of this study, there are several recommendations that can be adopted by other
companies that plan to make similar migrations.

Migrating from monolithic to microservices requires careful planning, including an in-
depth analysis of the structure and dependencies of existing systems. Identification of
independent services and clear interface design are critical to ensuring successful migration.
Additionally, leveraging cloud services such as AWS can provide strong support for the
implementation of microservices. These services include container orchestration, serverless
computing, and integrated database management, as well as monitoring and logging tools
essential for efficient system management.

Thorough testing, both functional and non-functional, is also critical to ensure that
microservices function properly and communicate with each other. Load testing needs to be
done to ensure that the system is able to handle user surges. Once the migration is complete,
continuous monitoring and optimization are crucial steps to maintain system stability and
performance. Monitoring tools such as Amazon CloudWatch can be used to proactively detect
and address issues.

Finally, training and team development are important aspects in supporting the success
of the migration. The development team must be provided with adequate training regarding

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11755



Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

microservices architecture and the tools used in this process. Continuous skill development will
help teams better manage systems and accelerate the process of adapting to new technologies.

This research confirms that migrating to a microservices architecture with the support of
cloud technology can be an effective strategy for companies looking to improve operational
efficiency and system flexibility, while ensuring optimal scalability and performance in the
face of dynamic market needs.

REFERENSI

Ahmad, N., Naveed, Q. N., & Hoda, N. (2018). Strategy and procedures for migration to the
cloud computing. 2018 IEEE 5th International Conference on Engineering Technologies
and Applied Sciences (ICETAS 2018). https://doi.org/10.1109/ICETAS.2018.8629101

Al-Sayyed, R. M. H., Hijawi, W. A., Bashiti, A. M., AlJarah, 1., Obeid, N., & Adwan, O. Y.
(2019). An investigation of Microsoft Azure and Amazon Web Services from users’
perspectives. International Journal of Emerging Technologies in Learning, 14(10).
https://doi.org/10.3991/ijet.v14110.9902

Amazon Web Services. (2023). Overview of Amazon Web Services - AWS Whitepaper. Amazon
Web Services.

Amin, R., & Vadlamudi, S. (2021). Opportunities and challenges of data migration in cloud.
Engineering International, 9(1). https://doi.org/10.18034/e1.v911.529

Anderson, M., & Williams, K. (2023). Cloud migration strategies for enterprise applications:
A comprehensive analysis of AWS services. Journal of Cloud Computing Research,
12(3), 45-62. https://doi.org/10.1016/j.jccr.2023.03.012

Ashraf, A., Hassan, A., & Mahdi, H. (2023). Key lessons from microservices for data mesh
adoption. 3rd International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC 2023). https://doi.org/10.1109/MIUCC58832.2023.10278300

Bailuguttu, S., Chavan, A. S., Pal, O., Sannakavalappa, K., & Chakrabarti, D. (2023).
Comparing performance of bastion host on cloud using Amazon Web Services vs
Terraform. Indonesian Journal of Electrical Engineering and Computer Science, 30(3).
https://doi.org/10.11591/ijeecs.v30.i13.pp1722-1728

Brown, L., Martinez, R., & Johnson, P. (2024). Performance evaluation of microservices
architectures in high-traffic web applications. [International Journal of Software
Engineering, 18(2), 123—145. https://doi.org/10.1007/s10987-024-0234-1

Chen, S., Wang, H., & Liu, Y. (2023). Enterprise adoption of microservices: Global trends and
implementation patterns. /[EEE Transactions on Software Engineering, 49(8), 3421-3438.
https://doi.org/10.1109/TSE.2023.3287654

Davis, A., Thompson, J., & Rodriguez, M. (2022). Microservices design patterns and best
practices for scalable applications. ACM Computing Surveys, 55(4), 1-34.
https://doi.org/10.1145/3511892

Di Francesco, P., Malavolta, 1., & Lago, P. (2017). Research on architecting microservices:
Trends, focus, and potential for industrial adoption. 2017 IEEE International Conference
on Software Architecture (ICSA 2017). https://doi.org/10.1109/ICSA.2017.24

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11756


https://doi.org/10.1109/ICETAS.2018.8629101
https://doi.org/10.3991/ijet.v14i10.9902
https://doi.org/10.18034/ei.v9i1.529
https://doi.org/10.1016/j.jccr.2023.03.012
https://doi.org/10.1109/MIUCC58832.2023.10278300
https://doi.org/10.11591/ijeecs.v30.i3.pp1722-1728
https://doi.org/10.1007/s10987-024-0234-1
https://doi.org/10.1109/TSE.2023.3287654
https://doi.org/10.1145/3511892
https://doi.org/10.1109/ICSA.2017.24

Eduvest — Journal of Universal Studies
Volume 5, Number 9, September, 2025

Dubey, P., & Raja, R. (2023). An overview of Amazon Web Services. In 4 beginners guide to
Amazon Web Services. https://doi.org/10.1201/9781003406136-2

Igbal, A., & Colomo-Palacios, R. (2019). Key opportunities and challenges of data migration
in cloud: Results from a multivocal literature review. Procedia Computer Science, 164,
430-437. https://doi.org/10.1016/j.procs.2019.12.153

Kumar, V., Singh, R., & Gupta, A. (2022). Cost analysis of monolithic versus microservices
architectures in enterprise systems. Journal of Information Technology Management,
33(4), 78-95. https://doi.org/10.1080/09593969.2022.2087654

Li, S., Liu, H., Li, W., & Sun, W. (2023). An optimization framework for migrating and
deploying multiclass enterprise applications into the cloud. /EEE Transactions on
Services Computing, 16(2). https://doi.org/10.1109/TSC.2022.3174216

Luz, W., Agilar, E., De Oliveira, M. C., De Melo, C. E. R., Pinto, G., & Bonifacio, R. (2018).
An experience report on the adoption of microservices in three Brazilian government
institutions. ACM International Conference Proceeding Series.
https://doi.org/10.1145/3266237.3266262

Park, H., & Rodriguez, C. (2023). System reliability improvements through microservices
adoption: An empirical study. Reliability Engineering & System Safety, 231, 109-121.
https://doi.org/10.1016/j.ress.2023.01.034

Thompson, R., Adams, M., & Garcia, E. (2024). Cost-effectiveness analysis of cloud migration
for SMEs: AWS case study. International Journal of Business Information Systems, 45(2),
234-251. https://doi.org/10.1504/1JBIS.2024.127865

Zhang, P., Shi, X., Khan, S. U,, Ferreira, B., Portela, B., Oliveira, T., Borges, G., Domingos,
H., Leitdo, J., Mohottige, I. P., Gharakheili, H. H., Moors, T., Sivaraman, V., Najari, N.,
Berlemont, S., Lefebvre, G., Duffner, S., Garcia, C., Parmentier, A., ... Shan, H. (2019).
IEEE draft standard for spectrum characterization and occupancy sensing. /[EEE Access,
9(2).

Optimizing Pytixs Online Ticketing Applications with Microservices Implementation: An
Approach from Monolithic Infrastructure 11757


https://doi.org/10.1201/9781003406136-2
https://doi.org/10.1016/j.procs.2019.12.153
https://doi.org/10.1080/09593969.2022.2087654
https://doi.org/10.1109/TSC.2022.3174216
https://doi.org/10.1145/3266237.3266262
https://doi.org/10.1016/j.ress.2023.01.034
https://doi.org/10.1504/IJBIS.2024.127865

