

 Eduvest – Journal of Universal Studies

Volume 5 Number 10, October, 2025

p- ISSN 2775-3735- e-ISSN 2775-3727

12137 http://eduvest.greenvest.co.id

Contract Testing: A Framework for Security Evaluation in gRPC

Muhamad Zaenul Hasan Basri, Charles Lim, Kalpin Erlangga Silaen

Swiss German University, Indonesia

Email: muhamad.basri@student.sgu.ac.id, charles.lim@sgu.ac.id,

kalpin.erlangga@lecturer.sgu.ac.id

ABSTRACT

The growth of APIs, including SOAP, REST, and gRPC, has made security a critical priority, with incidents

such as those in the 2023 Paloalto report highlighting the financial losses resulting from API breaches. While

existing tools focus on REST APIs, gRPC remains underserved, requiring time-consuming manual testing. This

research aims to address this gap by proposing a security testing framework tailored to gRPC, integrating

automated methods that DevSecOps can use to improve efficiency. gRPC, built on HTTP/2, uses a binary

message format and client stubs generated from proto files, creating unique challenges for testing. The

methodology involves extracting payloads, generating stubs from proto files, creating test cases, and executing

automated tests for vulnerabilities such as SQL Injection and XSS. By analyzing gRPC components and

adapting common API security practices, the framework identifies vulnerabilities, streamlines testing, and

reduces manual effort. It automates processes such as payload generation and stub generation, enabling faster

and more reliable testing compared to traditional methods. Results demonstrate that GSTF reduces testing

time by 99% compared to manual methods while maintaining comprehensive coverage. Although some false

positives were noted, the framework effectively identifies critical vulnerabilities and integrates seamlessly with

DevSecOps pipelines. This approach not only improves testing efficiency by significantly reducing time but

also sets a benchmark for secure API development. This study provides a practical solution for enhancing

gRPC security, offering significant efficiency gains and establishing a foundation for future advancements in

API security automation.

KEYWORDS

gRPC, API security, automated testing, security framework, DevSecOps

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

INTRODUCTION

The development of APIs has expanded significantly, encompassing various types such

as SOAP, REST, and gRPC (Newton Hedelin, 2024; Sharma, 2021). Based on Paloalto's 2023

report on the consequences of API security incidents, which can be seen in Figure Error! No

text of specified style in document.., it was noted that team members suffered financial losses after

the incident. This caused substantial financial setbacks, especially for the companies affected

(Tan & Zhu, 2022). Currently, API security has become a very important requirement, and

security testing needs to be carried out to mitigate risks (Alharbi & Moulahi, 2023; Jangam et

al., 2022). The aspiration is that this research can assist other communities in enhancing the

security of their own APIs, particularly focusing on the gRPC API (Owen, 2025).

http://sosains.greenvest.co.id/index.php/sosains
mailto:muhamad.basri@student.sgu.ac.id
mailto:charles.lim@sgu.ac.id
mailto:kalpin.erlangga@lecturer.sgu.ac.id

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12138 http://eduvest.greenvest.co.id

Figure Error! No text of specified style in document.. API Security Incident 2023

Currently, the researcher works as a security tester for applications, particularly focusing

on APIs (Mousavi et al., 2025). Despite searching for a few years, the researcher found that

API security testing tools are generally built for REST APIs and do not support gRPC

natively, making testing more difficult (Basri & Hasan, 2024; Thiyagarajan et al., n.d.).

Consequently, the testing process is conducted manually, resulting in a time-consuming and

repetitive experience (Nama et al., 2021). This research aims to introduce a new framework

for security evaluation in gRPC, then creating automated methods and combining with

DevSecOps to automate them as well, to streamline and enhance the efficiency of the testing

process. DevSecOps is a combination of development, security and operations, which makes

the process faster and secure because the process is carried out automatically (Abiona et al.,

2024; Sinan et al., 2025). With automated process and the proposed new framework, it can be

used to carry out security assessments by carrying out security testing when the application

has been developed to reduce the risk of vulnerabilities after the initial process and can reduce

testing time significantly, especially in this project which focuses on developing API gRPC.

Google Remote Procedural Call (gRPC) is an open-source RPC protocol developed by

Google (Chen et al., 2023; Zhang et al., 2023).

gRPC has a very high processing speed and runs on the HTTP/2 protocol with messages

converted into binary message format (Khan & Ahamad, 2024). gRPC also uses clients to

generate functions using proto files provided by the server, which are called stub (client

generated in a particular language) or it can be called a gRPC client (Giretti, 2022; Štefanič,

2021). Then, this function will later be used in making requests and getting responses. This

makes the security testing of gRPC different from APIs in general, because the client will

send a request using a function that has previously been created and contains a message which

has been converted into a protocol buffer message and later the server will send back a

response in the form of a protocol buffer that will be converted using the function response

on the client (Frantz et al., 2024; Sangwai et al., 2023).

Conducting a thorough examination of how gRPC works compared to another APIs is

essential (Ali, 2024). The results of this comparative analysis will produce a set of benchmark

components used in gRPC testing and help in developing a new framework as well as being

an important benchmark in determining which components will be tested. In addition, security

weaknesses and vulnerabilities commonly identified in another APIs will be identified and

adapted to facilitate analogous testing in the context of gRPC (Basri & Hasan, 2024). This

project aims to develop a new security testing framework tailored to the gRPC process.

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12139 http://eduvest.greenvest.co.id

This research is intended to serve as a reference for security professionals in testing

gRPC APIs by understanding the proposed framework in this thesis and to be able to solve

the problem of long testing time efficiency that I get when doing gRPC testing manually. The

approach involves comparing existing frameworks, identifying their weaknesses in relation

to gRPC, and redesigning a new framework to align with gRPC's specific functionality.

Based on the book "Modern API Design with gRPC" by Arora (2024), gRPC

encompasses various crucial aspects for its functionality. This research connects these aspects

with the research problems faced, namely "Limited tools and methods for gRPC security

testing" and "Security testing is manual and inefficient," ultimately leading to ineffective

testing. These issues relate to error handling and security, which are the primary focus areas

of this study. One contributing factor to the low efficiency of security testing in gRPC is the

lack of available tools and methods, often resulting in manual testing. The current testing

process is performed manually, making it time-consuming, especially when running multiple

test cases for each service, which typically requires creating stubs from proto files each time

a test is conducted. Additionally, repetitive testing, such as injection testing, further extends

the time needed to execute the overall testing process.

The objectives of this research include identifying key gRPC components for security

evaluation by developing customized test cases, highlighting gaps in existing security testing

frameworks while demonstrating the benefits of the proposed framework, and defining a new

framework for gRPC security testing that allows for automated test case generation by

integrating stub objects with payloads. This study also aims to validate the applicability and

effectiveness of the framework through implementation in a tool capable of automating

security testing. Consequently, this research is expected to improve efficiency, reduce testing

time, and provide better visibility of test results compared to manual methods. The study will

also consider existing limitations, such as focusing on specific components, testing in

controlled environments, and tailoring the framework specifically for gRPC, which may limit

generalizability. The significance of this study lies in its role in addressing cybersecurity

challenges associated with gRPC APIs, which are critical for organizations relying on inter-

service communication. By identifying vulnerable components and developing targeted test

cases, this research aims to enhance the security of gRPC APIs and reduce the risk of

exploitation and data breaches.

METHOD

Figure 2. Research methodology

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12140 http://eduvest.greenvest.co.id

The research methodology in this case involves conducting a literature review and

performing a security evaluation using the proposed framework developed in this thesis. The

focus of these activities is outlined in the research framework, as depicted in Figure 2., which

guides the process to achieve the final results in the security evaluation of gRPC.

The GSTF (gRPC Security Testing Framework) identified to be proposed at this stage

can be seen in Figure Error! No text of specified style in document... In this framework, it is divided

into several parts including Extraction of Payload, Code Generation, Test Case Creation and

Execution. In the "Execution" phase, automation will be implemented since the required

objects, such as payloads, stubs, and test cases, have already been created in before process

and the payload will be adjusted based on its data type based that will be created as a test case.

At this stage, the process involves simply running these objects and validating the results.

Regarding the success criteria for implementing this framework, since the primary issue in

this research problem the inefficiency of manual testing, which results in prolonged testing

times, it is expected that this framework will significantly reduce testing time by 60% until

80% or even more depending on the context. The exact percentage of improvement depends

on factors such as:

a. Test Case Complexity: Automation is more effective for repetitive, time-consuming tasks,

leaving complex, exploratory tests to manual efforts.

b. Coverage: Automated tools can increase test coverage, catching more issues than manual

testing would in the same timeframe.

c. Speed: Automation speeds up execution, especially for regression testing and large test

suites.

d. Consistency: Automation reduces human error, ensuring tests are run in the same way

every time.

Figure Error! No text of specified style in document.. GSTF (gRPC Security Testing Framework)

Payload Extraction

This stage involves extracting the payload for testing, compiling it into a JSON/YAML

file, and mapping important attributes such as data type, attack name, payload data, and

expected results according to the Figure . The process includes:

Figure 4. Phase 1 - Extraction of payload

a. Input: Collecting payloads for common vulnerabilities such as SQL injection (SQLi),

cross-site scripting (XSS), local file inclusion (LFI), and server-side request forgery

(SSRF) in JSON/YAML format.

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12141 http://eduvest.greenvest.co.id

b. Process: In this process, the input file will be extracted by mapping the payload on each

attribute including data type, attack name, payload data, and expected results.

c. Output: The output that will be provided by the payload extraction process is an object

that has been mapped based on attributes.

Code Generation

The proto file is processed to generate stubs, gRPC functions that handle requests and

responses according to the Figure. Using Python, automation ensures all request methods are

seamlessly integrated with the test payload. The steps are:

Figure 5. Phase 2 - Code generation

a. Input: The input to this process is a proto file from the gRPC service.

b. Process: In this process, a proto file will be generated to become a request and response

function.

c. Output: The main output of this process is a stub or request and response function.

Test Case Creation

The stub parameters are used to generate test data, including valid and invalid inputs,

based on vulnerabilities in payloads. The payload from the JSON/YAML file is paired with

the stub parameters to create test cases and serialized into a protocol buffer according to the

Figure 6.. The steps include:

Figure 6. Phase 3 - Test case creation

a. Input: The input to this process is the payload generated from Phase 1 and the stub

generated from phase 2.

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12142 http://eduvest.greenvest.co.id

b. Process: In this process, a payload will be combined with a stub or request and response

function in gRPC based on the data type to become a test case and convert to protocol

buffer.

c. Output: an object in the form of a combined test case and payload that can be used for the

next phase.

RESULTS AND DISCUSSION

This chapter presents the results of security testing conducted using the GSTF

framework implemented in Python. The objective is to evaluate and validate the effectiveness

of GSTF in identifying vulnerabilities and improving the testing process compared to

traditional manual methods. The security testing approach follows the PoC scope defined

earlier, which includes:

a. Manual security testing using conventional human-driven techniques.

b. GSTF security testing, leveraging automation for efficiency.

c. Comparison of manual and GSTF testing, focusing on execution time

d. Comparison of GSTF with other security testing tools to assess its advantages.

The testing is performed on a gRPC-based API, ensuring all functions defined in the

proto file are covered. This structure ensures a clear, structured evaluation of GSTF’s

capabilities, limitations, and improvements over traditional methods.

Security Testing Execution

During the testing phase, the framework was transformed into a tool aligned with the

GSTF framework and implemented using Python to automate the requests generated by

GSTF. The expected outputs, which serve as key parameters, include execution time,

identified vulnerabilities, coverage, false positive, success and error rates. In addition, manual

testing was performed to collect execution time data, which was then compared with GSTF

to calculate the efficiency achieved. The vulnerabilities that will be used as test cases in this

test are based on API vulnerabilities that are often found in studies conducted in 2023,

including:

a. SQL Injection

b. Cross Site Scripting (XSS)

c. Local File Inclusion (LFI)

d. Server-Side Request Forgery (SSRF)

e. Remote Command Execution (RCE)

f. Xpath Injection

g. Command Injection

h. LDAP Injection

With the above vulnerabilities, testing will be done on every method including GSTF

and manual testing. This testing is not based on vulnerabilities such as IDOR, Improper Input

Validation which require humans to validate them manually and only common vulnerabilities

can be validated based on patterns.

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12143 http://eduvest.greenvest.co.id

Manual Security Testing

Figure 7. API Architecture in manual testing using postman

This section discusses the results obtained from manual security testing. This process

involves periodically checking gRPC API endpoints, sending requests made, and analyzing

responses for potential vulnerabilities using the Postman application according to the

architecture in Figure 7.7. Manual techniques such as input validation checks, authentication

bypass attempts, and error message analysis were used to uncover security weaknesses.

The results uncovered several vulnerabilities, including improper input sanitization,

weak authentication mechanisms, and inadequate error handling. While manual testing

provides valuable insights, it is time-consuming and requires significant expertise to uncover

complex issues. The challenges of manual testing include:

a. Long time required for comprehensive coverage.

b. Inconsistent results due to human error.

c. Difficulty in detecting complex vulnerabilities such as race conditions or subtle data leaks.

A summary of the results of manual security testing is presented in the

Table 1, highlighting the execution time for each endpoint and the vulnerabilities

identified. This test was conducted 3 times by obtaining the average execution time using

postman in initializing by importing the proto file which can be seen in

Figure8 and the sample request testing with manual validation which can be seen in

Figure 9.9 and Figure 10.10.

Table 1. Time execution for manual security testing in gRPC

Endpoint Execution time (ms) avg Identified vulnerability

Initialization process 35000 • SQL Injection

• Xpath Injection Auth 315000

Signup 302000

VerifyToken 291000

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12144 http://eduvest.greenvest.co.id

Figure 8. Initialize import auth proto file

Figure 9. Sample security testing request in gRPC and validate manually for XPATH Injection

Figure 10. Sample security testing request in gRPC and validate manually for SQL Injection

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12145 http://eduvest.greenvest.co.id

The test results show that manual testing in gRPC is very time-consuming, especially

during the actual testing process. In contrast, the initialization process, such as importing proto

files, is relatively fast. However, the overall test duration remains long, with the longest

recorded time being 315,000 milliseconds (or 315 seconds) for eight test scenarios, as

illustrated in Figure11.

Figure 11. Time execution chart for manual testing

GSTF Security Testing

Figure 12. API Architecture in GSTF Testing

This section reviews the results of security testing conducted using GSTF (gRPC

Security Testing Framework) implemented in Python and testing is done with the same test

cases as manual testing. GSTF automates the testing process by generating payloads, creating

stubs, sending requests, and validating responses in a structured manner with requests sent

based on the architecture in Figure 12. The framework is designed to overcome the limitations

of manual testing by increasing efficiency and improving vulnerability detection. The testing

process involves the following major phases:

Extraction of Payload

In the first phase of the GSTF framework, payload extraction is performed from a

YAML file, which is loaded based on its data type. This process is illustrated in the

pseudocode in Figure13 under the "Phase 1" tag and can be seen in the code section in

Appendix Error! Reference source not found., specifically in Error! Reference source not

found. and Error! Reference source not found. and the sample payloads used in this testing

can be found in Error! Reference source not found. and Error! Reference source not

found..

0

50000

100000

150000

200000

250000

300000

350000

Initialization process Auth Signup VerifyToken

Time Execution for Manual Testing

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12146 http://eduvest.greenvest.co.id

Code Generation

In the second phase of the GSTF framework, the proto file is automate generated into a

stub or function used to send requests and receive responses. This process is illustrated in the

pseudocode in Figure13 under the "Phase 2" tag and can be found in the code section in

Appendix Error! Reference source not found., specifically in Error! Reference source not

found. and Error! Reference source not found. with proto file that can be seen in Error!

Reference source not found..

Test Case Creation

In the third phase of the GSTF framework, payload and stub combinations are generated

based on data types to create comprehensive test cases. This process is illustrated in the

pseudocode in Figure13 under the "Phase 3" tag and can be found in the code section in

Appendix Error! Reference source not found., specifically in Error! Reference source not

found. and Error! Reference source not found..

Execution

In the fourth phase of the GSTF framework, the generated test cases are executed,

followed by automate evaluation and validation within the GSTF tools to gather insights on

execution time and identified vulnerabilities with the output is report in excel format and

further manual verification can be done to determine false positives that can be seen in section.

This process is illustrated in the pseudocode in Figure 13 under the "Phase 4" tag and can be

found in the code section in Appendix Error! Reference source not found., specifically in

Error! Reference source not found..

Figure 13. Pseudocode for GSTF tool

The results of the execution phase 0 above explain the The GSTF framework

efficiently identifies vulnerabilities such as SQLi, XSS, LFI, SSRF, RCE, XPath injection,

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12147 http://eduvest.greenvest.co.id

command injection, and LDAP injection according to the payload used, surpassing the

effectiveness of manual testing even though only a few were identified during testing. In

addition, the framework uncovers complex issues, such as improper handling of edge cases,

which are often overlooked during manual testing. The test results can be seen in Table 2,

which was carried out 3 times that can be seen in Figure 1Error! No text of specified style in

document..14, with data collection based on the average test time.

Table 2. Time execution using GSTF security testing in gRPC

Endpoint Execution time (ms) avg Identified vulnerability

Initialization process 300 - SQL Injection

- Cross Site Scripting

(XSS)

- Xpath Injection

Auth 1692

Signup 2665

VerifyToken 833

Figure 1Error! No text of specified style in document.. Sample GSTF testing results

The test results show that GSTF testing on gRPC runs very fast, especially during the

actual testing process. In contrast, the initialization phase, such as importing proto files, is

relatively slower compared to testing. In addition, the test duration is very efficient, with the

longest test taking only 2665 milliseconds, as shown in Table 23 and Figure15.

Figure 15. Time execution chart for GSTF testing

0

500

1000

1500

2000

2500

3000

Initialization process Auth Signup VerifyToken

Time Execution for GSTF Testing

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12148 http://eduvest.greenvest.co.id

Comparison Between Manual and GSTF testing Based on Execution Time

The comparison between manual security testing and GSTF-based testing highlights

notable distinctions. GSTF consistently outperformed manual testing in terms of execution

speed and coverage. While manual testing was limited by human effort and time constraints,

GSTF automated approach provided more comprehensive and consistent results. The

comparison highlights significant differences in performance and efficiency between manual

and GSTF testing approaches:

• Time Efficiency: GSTF testing is significantly faster than manual testing across all

processes.

• Consistency: GSTF provides consistent test results with minimal errors, while manual

testing is prone to human error and variability.

Figure16 highlights the significant differences between GSTF and manual testing. GSTF

shows superior efficiency, with an average initialization time of 300 milliseconds and a

maximum test duration of 2665 milliseconds. In contrast, manual testing shows much slower

performance, with an average initialization time of 35,000 milliseconds (35 seconds) and a

maximum test duration of 315,000 milliseconds (315 seconds).

Figure 16. Comparison time execution between GSTF and manual testing

When comparing manual testing efficiency to the GSTF framework, the difference is

stark. The data reveals a staggering 99% increase in testing speed with GSTF, calculated using

formula Error! Reference source not found. with details shown in Table 3. This dramatic

jump not only confirms GSTF’s potential to revolutionize testing efficiency but also surpasses

initial expectations and this also answers the question from Error! Reference source not

found. regarding this framework being able to provide significant efficiency improvements

and even exceeds Hypothesis 4 which only ranges up to 80% according to the average test in

the organization.

For companies that adopt GSTF, the future holds significant benefits. By drastically

reducing testing time, resources can be reallocated to other critical areas, driving innovation

and growth. Consistent and automated testing processes minimize human error, ensuring

higher accuracy in detecting vulnerabilities. Additionally, GSTF’s ability to seamlessly

integrate with DevSecOps pipelines accelerates the software development lifecycle, enabling

0

50000

100000

150000

200000

250000

300000

350000

Initialization process Auth Signup VerifyToken

Comparison Time Execution for GSTF and Manual Testing

GSTF (ms) avg Manual (ms) avg

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12149 http://eduvest.greenvest.co.id

faster delivery of secure and reliable applications. This translates into cost savings, increased

productivity, and a stronger competitive advantage in an ever-evolving technology landscape.

Table 3. Improvement Execution Time

Metric Manual Testing GSTF Testing Improvement (%)

Execution Time (ms) 652000 5491 99%

Comparison of GSTF Security Testing Results with Other Tools

In this study, various tools were used to compare them with the tools developed by

GSTF. However, the testing remains limited, as the tools used were primarily manual, and no

other automated tools were identified for comparison. Table Error! No text of specified style in

document.. presents the comparative results of similar tests conducted previously. The table

highlights that the “Automate” test type is only applicable to GSTF, while other tools, such

as Postman and gRPCurl, still require manual execution despite being tools. Although the

comparison is not completely “apple to apple” due to the differences in testing approaches,

the findings clearly show that GSTF provides significant advantages in testing efficiency and

effectiveness.

Table Error! No text of specified style in document.. Comparison execution time of GSTF vs other tools

which support gRPC

No Tools Type of Testing Execution time (ms)

1 GSTF Automate 5491

2 Postman Manual 652000

3 gRPCurl Manual 1008000

Evaluation

At this stage, re-evaluate the test results in section. To evaluate the GSTF framework,

this study uses the success and error rate parameters in gRPC to measure its ability to handle

invalid input, special cases, and vulnerabilities without causing any harm using data from

GSTF test results. The results show that GSTF can manage tests with invalid input, even when

errors occur that need to be converted to RPC status codes. Nevertheless, GSTF successfully

completes the tests. The evaluation of the success and error rates is presented in Table 4,

which shows a much lower success rate compared to errors.

Table 4. Success and error rate in testing

Metric Total Execution Output Rate Percentage

Success Rate (%) 270 10 4%

Error Rate (%) 270 260 96%

However, all errors were successfully mapped by GSTF and used as validation

references for the test results, as shown in Table 5. This indicates that, not only is it successful

in executing each request, GSTF is also capable of handling errors as validation material.

Table 5 Status code in testing

Status Code Total

OK 10

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12150 http://eduvest.greenvest.co.id

INTERNAL 22

UNAUTHENTICATED 99

UNKNOWN 4

ALREADY_EXISTS 135

CONCLUSION

GSTF demonstrates a clear advantage over manual testing for security evaluation,

achieving a 99% reduction in execution time while consistently detecting vulnerabilities

across multiple endpoints, including complex issues such as improper handling of edge cases.

Unlike manual testing, which is slow, inconsistent, and heavily dependent on human

expertise, GSTF offers scalability and reliability, despite occasional higher error rates caused

by invalid inputs requiring RPC status code conversion and the possibility of false positives

confirmed through manual proof-based verification. Future research could focus on enhancing

GSTF’s accuracy by improving input validation mechanisms and developing advanced false-

positive mitigation techniques to further increase trust and effectiveness in large-scale

automated API security testing.

REFERENCES

Abiona, O. O., Oladapo, O. J., Modupe, O. T., Oyeniran, O. C., Adewusi, A. O., & Komolafe,

A. M. (2024). The emergence and importance of DevSecOps: Integrating and

reviewing security practices within the DevOps pipeline. World Journal of Advanced

Engineering Technology and Sciences, 11(2), 127–133.

Alharbi, S. J., & Moulahi, T. (2023). API security testing: the challenges of security testing

for restful APIs. International Journal of Innovative Research in Science Engineering

and Technology, 8(5), 1485–1499.

Ali, O. (2024). Popular API Technologies: REST, GraphQL, and gRPC.

Arora, S., Bhardwaj, A., Kukkar, A., & Kaur, S. (2024). A Comparative Analysis of

Communication Efficiency: REST vs. gRPC in Microservice-Based Ecosystems.

2024 International Conference on Emerging Innovations and Advanced Computing

(INNOCOMP), 621–626.

Basri, M. Z. H., & Hasan, M. Z. (2024). Analysis and security testing for grpc. No. January,

2020–2023.

Chen, J., Wu, Y., Lin, S., Xu, Y., Kong, X., Anderson, T., Lentz, M., Yang, X., & Zhuo, D.

(2023). Remote procedure call as a managed system service. 20th USENIX Symposium

on Networked Systems Design and Implementation (NSDI 23), 141–159.

Frantz, R., García, J. S., Copik, M., Monroy, I. T., Olmos, J. J. V., Bloch, G., & Di Girolamo,

S. (2024). Protocol Buffer Deserialization DPU Offloading in the RPC Datapath.

SC24-W: Workshops of the International Conference for High Performance

Computing, Networking, Storage and Analysis, 886–895.

Giretti, A. (2022). Create a gRPC-web service from a gRPC-service with ASP. NET Core. In

Beginning gRPC with ASP. NET Core 6: Build Applications using ASP. NET Core

Razor Pages, Angular, and Best Practices in. NET 6 (pp. 395–418). Springer.

Jangam, S. K., Karri, N., & Muntala, P. S. R. P. (2022). Advanced API Security Techniques

Eduvest – Journal of Universal Studies

Volume 5, Number 10, October, 2025

12151 http://eduvest.greenvest.co.id

and Service Management. International Journal of Emerging Research in

Engineering and Technology, 3(4), 63–74.

Khan, I., & Ahamad, M. K. (2024). Enhancing Security and Performance of gRPC-Based

Microservices using HTTP/3 and AES-256 Encryption.

Mousavi, Z., Islam, C., Babar, M. A., Abuadbba, A., & Moore, K. (2025). Detecting misuse

of security APIs: A systematic review. ACM Computing Surveys, 57(12), 1–39.

Nama, P., Meka, N. H. S., & Pattanayak, N. S. (2021). Leveraging machine learning for

intelligent test automation: Enhancing efficiency and accuracy in software testing.

International Journal of Science and Research Archive, 3(01), 152–162.

Newton Hedelin, M. (2024). Benchmarking and performance analysis of communication

protocols: A comparative case study of gRPC, REST, and SOAP. KTH Royal Institute

of Technology.

Owen, A. (2025). Microservices Architecture and API Management: A Comprehensive Study

of Integration, Scalability, and Best Practices.

Sangwai, A., Sapale, S., Ghodake, S., & Jadhav, R. (2023). Barricading system-system

communication using gRPC and protocol buffers. 2023 5th Biennial International

Conference on Nascent Technologies in Engineering (ICNTE), 1–5.

Sharma, S. (2021). Modern API Development with Spring and Spring Boot: Design highly

scalable and maintainable APIs with REST, gRPC, GraphQL, and the reactive

paradigm. Packt Publishing Ltd.

Sinan, M., Shahin, M., & Gondal, I. (2025). Integrating Security Controls in DevSecOps:

Challenges, Solutions, and Future Research Directions. Journal of Software:

Evolution and Process, 37(6), e70029.

Štefanič, M. (2021). Developing the guidelines for migration from RESTful microservices to

gRPC. Brno.

Tan, Y., & Zhu, Z. (2022). The effect of ESG rating events on corporate green innovation in

China: The mediating role of financial constraints and managers’ environmental

awareness. Technology in Society, 68, 101906.

Thiyagarajan, G., Bist, V., & Nayak, P. (n.d.). Strengthening gRPC Security in Microservices:

A Proxy-based Approach for mTLS, JWT, and RBAC Enforcement. International

Journal of Computer Applications, 975, 8887.

Zhang, L., Pang, K., Xu, J., & Niu, B. (2023). High performance microservice communication

technology based on modified remote procedure call. Scientific Reports, 13(1), 12141.

