

The Influence of Claim Services on The Increase In Sales of Insurance Products At PT. Jasaraharja Putera

Budi Santosa*, Boby Wiryawan Saputra

Sekolah Tinggi Ilmu Ekonomi Harapan Bangsa, Indonesia

Email: budys.jp@gmail.com*, bobby@ithb.ac.id

ABSTRACT

This research investigates the influence of claim services on customer repurchase intention of insurance products at PT. Jasaraharja Putera. The study focuses on three key variables: claim knowledge, claim process, and approved claims, analyzing their effects on customer repurchase intention. A quantitative approach was employed, utilizing surveys to gather data from 100 policyholders through purposive sampling. Data were analyzed using multiple linear regression after testing for validity, reliability, and classical assumptions. Results indicate that all three variables positively impact customer loyalty and purchasing decisions. Among them, approved claims have the most significant effect ($\beta = 0.455$), followed by claim process ($\beta = 0.352$) and claim knowledge ($\beta = 0.142$), highlighting the importance of efficient claim processing and transparency in enhancing customer satisfaction. The regression model explains 73.2% of the variance in repurchase intention ($R^2 = 0.732$). The findings provide valuable insights for the company to optimize its claim services and improve sales, particularly by prioritizing claim approval certainty, streamlining claim procedures, and enhancing customer education about claim mechanisms.

KEYWORDS

Claim Services; Customer Loyalty; Insurance Products; Repurchase Intention

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

INTRODUCTION

The insurance industry in Indonesia has undergone significant development in recent decades, especially with increasing public awareness of the importance of financial protection. Insurance has become one of the necessities for many individuals and families to deal with unexpected risks (Babuna et al., 2020; Gupta et al., 2022; Sosa & Sosa, 2025; Xie, 2022). In conditions of increasingly fierce competition, insurance companies face the challenge of not only offering competitive products but also improving customer satisfaction. One of the important factors that affects customer decisions in choosing insurance products is the quality of claim services provided by insurance companies (Amtul Wahab et al., 2024; Nema & Choudhary, 2025; Rao et al., 2023; Reddy & Jahangir, 2015).

Increasing sales of insurance products is one of the main goals of insurance companies in maintaining business continuity and competitiveness in the market. In the midst of increasingly fierce competition, insurance companies must provide quality services to attract customer interest and increase loyalty (Anni Zuhro Syafrida Hasibuan et al., 2023; Nur et al., 2025; Putri et al., 2024). One important aspect that influences a customer's decision to choose an insurance product is the claim service provided. A fast, transparent, and satisfactory claims service creates a high sense of trust among customers, which in turn boosts satisfaction and the likelihood of further product purchases (Jones & Sasser, 2018).

PT. Asuransi Jasaraharja Putera (JRP Insurance) is a state-owned subsidiary of PT. Jasa Raharja, engaged in non-life insurance (general insurance) and project guarantees (surety bonds), as well as providing sharia-based insurance products. Founded on November 27, 1993, the company plays a leading role in protecting against various risks such as property loss, motor

vehicles, personal accidents, fire, and construction project risks through flagship products like JP-ASTOR, JP-GRAHA, JP-ASPRI, and JP-BONDING. In addition, Jasaraharja Putera provides reinsurance services and continues to innovate with the Ezurance Smart Customer digital platform to facilitate policy purchases and claim submissions. The company has an extensive service network with dozens of branch offices, marketing offices, and service units throughout Indonesia, supported by a professional marketing team and digital outlets. With a vision to become a leading insurance company in Indonesia and a mission to provide appropriate products with excellent service, Jasaraharja Putera is also active in improving insurance literacy through collaborations with universities and public agencies. Currently, the majority of its shares (around 93.8%) are owned by PT. Jasa Raharja, strengthening its position as part of the national social protection ecosystem.

Over the past five years, the non-life insurance industry has experienced stable and positive growth globally, with total premiums reaching USD 3.6 trillion in 2023 and a compound annual growth rate (CAGR) of around 5–6%. The automotive segment remains dominant, followed by property and legal liability, while growth is also driven by increasing needs for protection against natural disasters and business risks. The North American region leads market share, but Asia shows the fastest growth. Claims inflation, rising reinsurance rates, and regulatory pressures pose major challenges, although profitability has improved significantly—the ROE of the global non-life sector rose from around 3.4% (2022) to 7.8% (2023) and is projected to reach 9.3% in 2024. The acceleration of digital transformation through insurtech, AI, and data analytics has changed how marketing and risk management are conducted in this industry. Overall, despite external pressures, the non-compulsory insurance sector continues to grow as risk awareness and the need for comprehensive protection increase.

PT. Jasaraharja Putera, as one of Indonesia's leading insurance companies, faces challenges in increasing sales amid high competition in the industry. According to the company's internal reports, although it offers a wide range of competitive products, obstacles remain in rapidly increasing approved claims, impacting customer satisfaction. Several previous studies reveal that efficient claims services positively affect insurance product sales (Dube & Hitsch, 2016). Therefore, it is important for PT. Jasaraharja Putera to evaluate thoroughly the influence of claim services on the increase in sales of insurance products at PT. Jasaraharja Putera.

Based on total production data for 2020–2024 from the PT. Jasaraharja Lampung Branch, there was an increase from 2020–2023. However, in 2024, total production declined, causing insurance premium sales to decrease. This decline indicates instability in company performance despite the prior upward trend. It opens opportunities for further analysis, particularly regarding service quality factors that may contribute to the drop in insurance production. Possible decreases in customer satisfaction—due to claim services, complaint responses, or suboptimal communication—could significantly influence consumers' decisions to buy or renew premiums. Therefore, an in-depth evaluation of the services provided by PT. Jasaraharja Putera is needed to identify improvement areas, enabling the company to boost insurance sales and production in coming years.

Claim knowledge in the insurance industry refers to policyholders' understanding of claim procedures, their rights and obligations, and factors affecting claim approval or rejection. This knowledge is important because it influences customer behavior in using insurance. The Influence of Claim Services on The Increase In Sales of Insurance Products At PT. Jasaraharja Putera

services and their satisfaction levels (Zimmerman, 2019). A study by Bhatia and Jain (2021) shows that policyholders with good understanding of the claims process trust insurance companies more and experience fewer disputes.

From an insurance company's perspective, improving customer understanding of the claims process can reduce disputes and increase loyalty. Research by Grace and Klein (2019) indicates that companies providing responsive service and clear claims guidance achieve higher retention rates. Additionally, transparency in communicating claim denial reasons helps reduce negative perceptions (Fang et al., 2020).

The claim process in insurance is the stage policyholders must complete to obtain policy benefits. According to Rejda and McNamara (2021), an effective process requires transparency, efficiency, and fairness in assessing claim validity. It typically includes claim submission by the policyholder, document verification, company evaluation, and fund disbursement if approved. Speed and ease are key factors affecting customer satisfaction (Cummins & Weiss, 2020).

In the insurance industry, an approved claim is one accepted by the company after evaluation and verification per policy terms. According to Rejda and McNamara (2021), approval rates depend on document completeness, claim validity, and policyholder compliance. Processing speed is also crucial for maintaining satisfaction and trust (Cummins & Weiss, 2020).

This study aims to analyze how the quality of claims services at PT. Jasaraharja Putera influences customers' purchasing decisions and ultimately boosts insurance product sales. The quality factors include claim knowledge, claim process, and approved claims. This research is expected to provide insights for optimizing claims services to drive future sales growth (Wirtz & Lovelock, 2018).

The research objectives are: To analyze the influence of claim knowledge on insurance product sales at PT. Jasaraharja Putera. To analyze the influence of the claim process on insurance product sales at PT. Jasaraharja Putera. To analyze the influence of approved claims on insurance product sales at PT. Jasaraharja Putera.

This research is expected to benefit various parties. By examining claim knowledge, claim process, and approved claims, PT. Jasaraharja Putera can identify which variables most significantly influence sales. This allows focused improvements on key factors, avoiding sales declines and refining strategies. Ultimately, it can drive sales growth for PT. Jasaraharja Putera's insurance products. It also offers new insights for readers and serves as a reference for future similar studies, proving the influence of these variables.

METHOD

This research employed a quantitative approach with a cross-sectional survey design, conducted from January to May 2025. It collected numerical data from policyholders to test hypotheses on claim services' influence on insurance product sales, analyzed via statistical techniques. Survey research was selected because it enabled standardized data collection on perceptions and experiences in a natural setting (Sugiyono, 2016).

The research focused on PT. Jasaraharja Putera, a government-owned insurance company and subsidiary of PT. Jasa Raharja (Persero). It offered products such as motor

vehicle, fire, personal accident, and travel insurance. The study examined factors like claim services affecting premium sales and customer decisions.

RESULT AND DISCUSSION

Exploratory Factor Analysis on Claim Knowledge (X1)

Reliability Test

Variable predictor Claim Knowledge formed by five indicators and measured using a scale Likert 1 (strongly disagree) to 5 (strongly agree). The Reliability Test is performed using Cronbach's Alpha statistical test. This variable can be declared reliable or pass the reliability test if it has a Cronbach's Alpha value ≥ 0.60 . The following are the results of the reliability test for Claim Knowledge (X1).

Table 1. Reliability Test Results of Claim Knowledge Variables (X1)

Reliability Statistics		
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
0.889	.887	5

Source: SPSS Data Processing Results (2025)

From the results of the reliability test, it was obtained that Cronbach's Alpha value was 0.889. Because Cronbach's Alpha value ≥ 0.60 , it can be concluded that the 5 indicators in the Claim Knowledge variable passed the reliability test. This means that if repeated measurements are made, the results obtained from the 5 indicators will generally be the same.

Table 2. Reliability Test Results (Cronbach's Alpha If Item Deleted) on Claim Knowledge Variable (X1)

Item	Item-Total Statistics					Cronbach's Alpha if Item Deleted
	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation		
X11	17.7000	5.272	.899	.986		.825
X12	17.6867	5.384	.754	.797		.859
X13	17.7067	5.269	.901	.987		.825
X14	17.8067	6.601	.445	.396		.920
X15	17.7400	6.576	.680	.531		.877

Source: SPSS Data Processing Results (2025)

From Table 2, no indicator should be removed or omitted because Cronbach's Alpha value (0.889) will be reduced if any of the indicators are omitted. The results show that if indicator 1 is eliminated then the value of Cronbach's Alpha will drop to 0.825, if indicator 2 is eliminated it will drop to 0.859, and if indicator 5 is eliminated then the value will drop to 0.877. This means that all items that are used as measuring tools (indicators) are all reliable.

Table 3. Average Score of Each Indicator on the Claim Knowledge Variable (X1)

Item Statistics			
Item	Mean	Std. Deviation	N
X11	4.4600	.69156	150
X12	4.4733	.75704	150
X13	4.4533	.69114	150
X14	4.3533	.61455	150

X15	4.4200	.76211	150
-----	--------	--------	-----

Source: SPSS Data Processing Results (2025)

The mean value for each indicator in the Claim Knowledge variable all got a score above 4, which means that respondents agree that Claim Knowledge has an influence on Customer Repurchase Intention.

Results of the KMO and Bartlett's Test

After the results are obtained that all variables pass the reliability test, the next stage is to conduct an assumption test of the analysis factor to ensure that the observed pattern is conceptually valid and suitable for further study using Exploratory Factor Analysis. The assumption test of this analysis factor was carried out using Bartlett's Test and MSA.

Table 4. Results of the KMO and Bartlett's Test Scores for the Claim Knowledge Variable (X1)

Kaiser-Meyer-Olkin Measure of Sampling Adequacy	.758
Bartlett's Test of Sphericity	995.043
Approx. Chi-Square	
df	10
Sig.	.000

Source: SPSS Data Processing Results (2025)

Measure of Sampling Adequacy (MSA) is carried out to measure the feasibility of a variable for factor analysis. MSA is measured using the SME value. If the SME value < 0.5 then the variable with the smallest SME value should be omitted until the individual and overall SME value is greater than 0.5. The Claim Knowledge variable has an SME value of 0.758 (greater than 0.5) so that this variable can be continued to the next stage, namely factor analysis.

The Bartlett's Test is conducted to measure the overall level of correlation between indicators. If the value of the Bartlett's Test < 0.05 , it means that there is a significant correlation between variables so that variables can be grouped into certain factors. The sig value for the Claim Knowledge variable is 0.000 (below 0.05), meaning that there is a significant correlation between the variables so that the analysis factor can be carried out.

In addition to the overall KMO and Bartlett's Test scores, it is also necessary to test the KMO and Bartlett's Test scores individually. The following are the individual KMO and Bartlett's Test values which can be seen in the Anti-Image Matrices table.

Table 5. Individual KMO-MSA Value Test Results for Claim Knowledge Variable (X1)

Item	X11	X12	X13	X14	X15	
Anti-image	X11	.014	.001	-.013	.009	-.012
Covariance:	X12	.001	.203	-.013	.094	-.018
	X13	-.013	-.013	.013	-.015	.007
	X14	.009	.094	-.015	.604	-.253
	X15	-.012	-.018	.007	-.253	.469
Anti-image	X11	.705 ^a	.025	-.962	.101	-.155
Correlation:	X12	.025	.929 ^a	-.256	.269	-.057
	X13	-.962	-.256	.692 ^a	-.166	.087
	X14	.101	.269	-.166	.676 ^a	-.475
	X15	-.155	-.057	.087	-.475	.841 ^a

Source: SPSS Data Processing Results (2025)

The results of the individual KMO-MSA value tests can be seen on the Anti-Image Correlation for each indicator (diagonal) with the letter "a" in the upper right part of the number. Indicator 1 has a KMO value of 0.705 where this number is above 0.05 so that indicator 1 will be continued for the next processing process (not eliminated), as well as for indicator 2 to indicator 5.

Total Variance Test Results Explained

Total Variance Explained is carried out to find out the extent to which the factors (indicators) extracted in explaining the relationship between the variables analyzed. The higher the Total Variance Explained value, the better the factor is in explaining the data. The following are the results of the Total Variance Explained test.

Table 6. Total Variance Explained for Claim Knowledge Variable (X1)

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.527	70.544	70.544	3.527	70.544	70.544
2	.975	19.501	90.045			
3	.353	7.069	97.114			
4	.138	2.752	99.866			
5	.007	.134	100.000			

Source: SPSS Data Processing Results (2025)

The results of the total variance explained show that there is only 1 factor that can be formed from the 5 components analyzed. This is because the condition for the formation of a factor is the value of Eigenvalues > 1 . The eigenvalue of component 1 is 3.527 and is able to explain 70.554% of the data variance.

Communalities Test Results

The Communalities test is carried out to find out the extent to which information in a variable can be represented by its factors. The value of communalities ranges from 0 to 1 where the higher the value indicates the greater the variance of the variables that can be explained by the extracted factors, meaning that the variable has a strong relationship with these factors. If the value of communalities is close to 0, then only a small variance of the variable can be explained by the extracted factors, meaning that the variable may not match the previously identified factors or indicators. The following are the results of the communalities test for the Claim Knowledge (X1) variable.

Table 7. Communalities Test Results for Claim Knowledge Variable (X1)

Item	Initial	Extraction
X11	1.000	.920
X12	1.000	.769
X13	1.000	.922
X14	1.000	.310
X15	1.000	.606

Source: SPSS Data Processing Results (2025)

A component is able to explain the factor if its extraction value > 0.5 . From the results

of the communalities test, the values for the 1st, 2nd, 3rd and 5th indicators were greater than 0.5. Therefore, it can be concluded that variables can explain the factor strongly.

Component Matrix Test Results

The Component Matrix test is carried out to determine the correlation coefficient between each observed variable and each extracted factor/indicator, meaning that this test is carried out to measure how strong the relationship between each variable and each factor is. The values in this test are referred to as factor loadings which range from -1 to 1. If the load factor value is close to 0, it means that the variable and the indicator have a weak relationship or no relationship. A value close to -1 or 1 means that the variable and its indicators have a strong relationship (negative or positive relationship). The following are the results of the component matrix test for the Claim Knowledge (X1) variable.

Table 8. Component Matrix Test Results for Claim Knowledge Variable (X1)

Item	Component 1
X11	.959
X12	.877
X13	.960
X14	.557
X15	.778

Extraction Method: Principal Component Analysis

a. 1 component extracted

Source: SPSS Data Processing Results (2025)

Based on the results of the component matrix test, it can be seen that all indicators have a high correlation (above 0.5) with the factor. The magnitude of the correlation between the indicator and its factors is called factor loadings.

Interpretation of Factors

After doing all the stages of the Exploratory Factor Analysis (EFA), then it is found that X11, X12, X13, X14, and X15 can be grouped into 1 group called as Claim Knowledge or Claims Knowledge.

Exploratory Factor Analysis on Process Claim Variables (X2)

Reliability Test

Variable predictor Process Claim formed by five indicators and measured using a scale Likert 1 (strongly disagree) to 5 (strongly agree). The Reliability Test is performed using Cronbach's Alpha statistical test. This variable can be declared reliable or pass the reliability test if it has a Cronbach's Alpha value ≥ 0.60 . The following are the results of the reliability test for Process Claim (X2).

Table 9. Reliability Test Results of Process Claim Variables (X2)

Reliability Statistics			
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items	
.910	.911	5	

Source: SPSS Data Processing Results (2025)

From the results of the reliability test, Cronbach's Alpha value was obtained at 0.910. Because Cronbach's Alpha value ≥ 0.60 , the 5 indicators in the Process Claim variable passed the reliability test. This means that if repeated measurements are made, the results obtained

from the 5 indicators will generally be the same.

Table 10. Reliability Test Results (Cronbach's Alpha If Item Deleted) on Process Claim Variable (X2)

Item	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
X21	17.8867	6.423	.801	.744	.883
X22	17.6667	6.935	.747	.756	.895
X23	17.9333	5.902	.893	.846	.862
X24	17.7333	7.214	.738	.747	.893
X25	17.9267	6.498	.706	.530	.905

Source: SPSS Data Processing Results (2025)

From Table 10, no indicator should be removed or omitted because Cronbach's Alpha value (0.910) will be reduced if any of the indicators are omitted. The results show that if indicator 1 is eliminated then the value of Cronbach's Alpha will drop to 0.883, if indicator 2 is eliminated it will drop to 0.895, and if indicator 5 is eliminated then the value will drop to 0.905. This means that all items that are used as measuring tools (indicators) are all reliable.

Table 11. Average Score of Each Indicator on Process Claim Variable (X2)

Item	Mean	Std. Deviation	N
X21	4.4000	.75972	150
X22	4.6200	.68218	150
X23	4.3533	.81213	150
X24	4.5533	.61890	150
X25	4.3600	.81331	150

Source: SPSS Data Processing Results (2025)

The mean value for each indicator in the Process Claim variable all received a value above 4, which means that the respondent agrees that the Process Claim has an influence on Customer Repurchase Intention.

Results of the KMO and Barlett's Test

After the results are obtained that all variables pass the reliability test, the next stage is to conduct an assumption test of the analysis factor to ensure that the observed pattern is conceptually valid and suitable for further study using Exploratory Factor Analysis. The assumption test of this analysis factor was carried out using Bartlett's Test and MSA.

Table 12. Results of SME and Bartlett's Test Values for Process Claim Variables (X2)

Kaiser-Meyer-Olkin Measure of Sampling Adequacy		.758
Bartlett's Test of Sphericity	Approx. Chi-Square	995.043
	df	10
	Sig.	.000

Source: SPSS Data Processing Results (2025)

Measure of Sampling Adequacy (MSA) is carried out to measure the feasibility of a variable for factor analysis. MSA is measured using the SME value. If the SME value < 0.5 then the variable with the smallest SME value should be omitted until the individual and overall SME value is greater than 0.5. The Process Claim variable has an KMO value of 0.758 (greater than 0.5) so that this variable can be continued to the next stage, namely factor analysis.

The Bartlett's Test is conducted to measure the overall level of correlation between indicators. If the value of the Bartlett's Test < 0.05 , it means that there is a significant correlation between variables so that variables can be grouped into certain factors. The sig value for the Process Claim variable is 0.000 (below 0.05), meaning that there is a significant correlation between the variables so that the analysis factor can be carried out.

In addition to the overall KMO and Bartlett's Test scores, it is also necessary to test the KMO and Bartlett's Test scores individually. The following are the individual KMO and Bartlett's Test values which can be seen in the Anti-Image Matrices table.

Table 13. Individual KMO-MSA Value Test Results for Process Claim Variables (X2)

	Item	X21	X22	X23	X24	X25
Anti-image Covariance:	X21	.256	-.149	-.029	-.037	-.007
	X22	-.149	.244	-.085	.099	-.041
	X23	-.029	-.085	.154	-.135	-.040
	X24	-.037	.099	-.135	.253	-.091
	X25	-.007	-.041	-.040	-.091	.470
Anti-image Correlation:	X21	.831 ^a	-.597	-.146	-.144	-.021
	X22	-.597	.708 ^a	-.440	.399	-.120
	X23	-.146	-.440	.766 ^a	-.686	-.148
	X24	-.144	.399	-.686	.703 ^a	-.264
	X25	-.021	-.120	-.148	-.264	.937 ^a

a. Measures of Sampling Adequacy (MSA)

Source: SPSS Data Processing Results (2025)

The results of the individual KMO-MSA value tests can be seen on the Anti-image Correlation for each indicator (diagonal) with the letter "a" in the upper right part of the number. Indicator 1 has a KMO value of 0.831 where this number is above 0.05 so that indicator 1 will be continued for the next processing process (not eliminated), as well as for indicator 2 to indicator 5.

Total Variance Test Results Explained

Table 14. Total Variance Explained for Process Claim Variable (X2)

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.701	74.024	74.024	3.701	74.024	74.024
2	.662	13.235	87.260			
3	.367	7.342	94.601			
4	.173	3.456	98.057			
5	.097	1.943	100.000			

Extraction Method: Principal Component Analysis

Source: SPSS Data Processing Results (2025)

The results of the total variance explained show that there is only 1 factor that can be formed from the 5 components analyzed. This is because the condition for the formation of a factor is the value of Eigenvalues > 1 . The eigenvalue of component 1 is 3.701 and can explain 74.024% of the data variance.

Communalities Test Results

The Communalities test is carried out to find out the extent to which information in a

variable can be represented by its factors. The value of communalities ranges from 0 to 1 where the higher the value indicates the greater the variance of the variables that can be explained by the extracted factors, meaning that the variable has a strong relationship with these factors. If the value of communalities is close to 0, then only a small variance of the variable can be explained by the extracted factors, meaning that the variable may not match the previously identified factors or indicators. The following are the results of the communalities test for the Process Claim (X2) variable.

Table 15. Communalities Test Results for Process Claim Variables (X2)

Item	Initial	Extraction
X21	1.000	.776
X22	1.000	.700
X23	1.000	.888
X24	1.000	.684
X25	1.000	.654

Extraction Method: Principal Component Analysis

Source: SPSS Data Processing Results (2025)

A component can explain the factor if its extraction value > 0.5 . From the results of the communalities test, the values for the 1st, 2nd, 3rd and 5th indicators were greater than 0.5. Therefore, it can be concluded that variables can explain the factor strongly.

Component Matrix Test Results

The Component Matrix test is carried out to determine the correlation coefficient between each observed variable and each extracted factor/indicator, meaning that this test is carried out to measure how strong the relationship between each variable and each factor is. The values in this test are referred to as factor loadings which range from -1 to 1. If the load factor value is close to 0, it means that the variable and the indicator have a weak relationship or no relationship. A value close to -1 or 1 means that the variable and its indicators have a strong relationship (negative or positive relationship). The following are the results of the component matrix test for the Process Claim (X2) variable.

Table 16. Component Matrix Test Results for Process Claim Variables (X2)

Item	Component 1
X21	.881
X22	.836
X23	.942
X24	.827
X25	.809

Extraction Method: Principal Component Analysis

a. 1 component extracted

Source: SPSS Data Processing Results (2025)

Based on the results of the component matrix test, all indicators have a high correlation (above 0.5) with the factor. The magnitude of the correlation between the indicator and its factors is called factor loadings.

Interpretation of Factors

After doing all the stages of the Exploratory Factor Analysis (EFA), then it is found that X21, X22, X23, X24, and X25 can be grouped into 1 group called Process Claim or Claims Process.

Exploratory Factor Analysis on Approved Claim (X3)

Reliability Test

Variable predictor Approved Claim formed by five indicators and measured using a scale Likert 1 (strongly disagree) to 5 (strongly agree). The Reliability Test is performed using Cronbach's Alpha statistical test. This variable can be declared reliable or pass the reliability test if it has a Cronbach's Alpha value ≥ 0.60 . The following are the results of the reliability test for the Approved Claim (X3).

Table 17. Reliability Test Results of Approved Claim Variables (X3)

Reliability Statistics		
Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items	N of Items
.829	.831	5

Source: SPSS Data Processing Results (2025)

From the results of the reliability test, it was obtained that Cronbach's Alpha value was 0.829. Because Cronbach's Alpha value ≥ 0.60 , it can be concluded that the 5 indicators in the Claim Knowledge variable passed the reliability test. This means that if repeated measurements are made, the results obtained from the 5 indicators will generally be the same.

Table 18. Reliability Test Results (Cronbach's Alpha If Item Deleted) on Approved Claim Variable (X3)

Item	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Squared Multiple Correlation	Cronbach's Alpha if Item Deleted
X31	17.7667	5.469	.494	.334	.834
X32	17.8600	5.289	.560	.590	.814
X33	17.7000	4.775	.771	.744	.751
X34	17.5333	4.989	.745	.577	.761
X35	17.6200	5.633	.588	.531	.806

Source: SPSS Data Processing Results (2025)

From Table 18, no indicator should be removed or omitted because Cronbach's Alpha value (0.889) will be reduced if any of the indicators are omitted. The results show that if indicator 1 is eliminated then the value of Cronbach's Alpha will drop to 0.834, if indicator 2 is eliminated it will drop to 0.814, and if indicator 5 is eliminated then the value will drop to 0.806. This means that all items that are used as measuring tools (indicators) are all reliable.

Table 19. Average Score of Each Indicator on the Approved Claim Variable (X3)

Item	Mean	Std. Deviation	N
X31	4.3533	.76970	150
X32	4.2600	.76351	150
X33	4.4200	.74428	150
X34	4.5867	.70651	150
X35	4.5000	.64246	150

Source: SPSS Data Processing Results (2025)

The mean value for each indicator in the Approved Claim variable all got a value above

4, which means that the respondent agrees that the Approved Claim has an influence on Customer Repurchase Intention.

Results of the KMO and Bartlett's Test

After the results are obtained that all variables pass the reliability test, the next stage is to conduct an assumption test of the analysis factor to ensure that the observed pattern is conceptually valid and suitable for further study using Exploratory Factor Analysis. The assumption test of this analysis factor was carried out using Bartlett's Test and MSA.

Table 20. Results of KMO and Bartlett's Test Scores for Approved Claim Variables (X3)

Kaiser-Meyer-Olkin Measure of Sampling Adequacy	.677
Bartlett's Test of Sphericity	356.458
Approx. Chi-Square	
df	10
Sig.	.000

Source: SPSS Data Processing Results (2025)

Measure of Sampling Adequacy (MSA) is carried out to measure the feasibility of a variable for factor analysis. MSA is measured using the SME value. If the SME value < 0.5 then the variable with the smallest SME value should be omitted until the individual and overall SME value is greater than 0.5. The Approved Claim variable has an SME value of 0.758 (greater than 0.5) so that this variable can be continued to the next stage, namely factor analysis.

The Bartlett's Test is conducted to measure the overall level of correlation between indicators. If the value of the Bartlett's Test < 0.05 , it means that there is a significant correlation between variables so that variables can be grouped into certain factors. The sig value for the Approved Claim variable is 0.000 (below 0.05), which means that there is a significant correlation between the variables so that the analysis factor can be carried out.

In addition to the overall KMO and Bartlett's Test scores, it is also necessary to test the KMO and Bartlett's Test scores individually. The following are the individual KMO and Bartlett's Test values which can be seen in the Anti-Image Matrices table.

Table 21. Individual KMO-MSA Value Test Results for Approved Claim Variables (X3)

Item	X31	X32	X33	X34	X35	
Anti-image	X31	.666	-.106	.081	-.188	-.137
Covariance:	X32	-.106	.410	-.219	-.015	.168
	X33	.081	-.219	.219	-.110	-.175
	X34	-.188	-.015	-.110	.423	-.093
	X35	-.137	.168	-.175	-.093	.469
Anti-image	X31	.722 ^a	-.202	.195	-.355	-.245
Correlation:	X32	-.202	.687 ^a	-.676	-.036	.383
	X33	.195	-.676	.630 ^a	-.335	-.505
	X34	-.355	-.036	-.335	.824 ^a	-.208
	X35	-.245	.383	-.505	-.208	.658 ^a

a. Measures of Sampling Adequacy (MSA)

Source: SPSS Data Processing Results (2025)

The results of the individual KMO-MSA value tests can be seen on the Anti-image Correlation for each indicator (diagonal) with the letter "a" in the upper right part of the

number. Indicator 1 has an SME value of 0.722 where this figure is above 0.05 so that indicator 1 will be continued for the next processing process (not eliminated), as well as for indicator 2 to indicator 5.

Total Variance Test Results Explained

Total Variance Explained is carried out to find out the extent to which the factors (indicators) extracted in explaining the relationship between the variables analyzed. The higher the Total Variance Explained value, the better the factor is in explaining the data. The following are the results of the Total Variance Explained test.

Table 22. Total Variance Explained for Approved Claim Variables (X3)

Component	Initial Eigenvalues			Extraction Sums of Squared Loadings		
	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.017	60.340	60.340	3.017	60.340	60.340
2	.844	16.883	77.223			
3	.640	12.805	90.027			
4	.341	6.813	96.840			
5	.158	3.160	100.000			

Source: SPSS Data Processing Results (2025)

The results of the total variance explained show that there is only 1 factor that can be formed from the 5 components analyzed. This is because the condition for the formation of a factor is the value of Eigenvalues > 1 . The eigenvalue of component 1 is 3.017 and can explain 60.340% of the data variance.

Communalities Test Results

The Communalities test is carried out to find out the extent to which information in a variable can be represented by its factors. The value of communalities ranges from 0 to 1 where the higher the value indicates the greater the variance of the variables that can be explained by the extracted factors, meaning that the variable has a strong relationship with these factors. If the value of communalities is close to 0, then only a small variance of the variable can be explained by the extracted factors, meaning that the variable may not match the previously identified factors or indicators. The following are the results of the communalities test for the Approved Claim (X3) variable.

Table 23. Communalities Test Results for Approved Claim Variables (X3)

Item	Initial	Extraction
X31	1.000	.424
X32	1.000	.516
X33	1.000	.779
X34	1.000	.739
X35	1.000	.559

Source: SPSS Data Processing Results (2025)

A component can explain the factor if its extraction value > 0.5 . From the results of the communalities test, the values for the 1st, 2nd, 3rd and 5th indicators were greater than 0.5. Therefore, it can be concluded that variables can explain the factor strongly.

Component Matrix Test Results

The Component Matrix test is carried out to determine the correlation coefficient

between each observed variable and each extracted factor/indicator, meaning that this test is carried out to measure how strong the relationship between each variable and each factor is. The values in this test are referred to as factor loadings which range from -1 to 1. If the load factor value is close to 0, it means that the variable and the indicator have a weak relationship or no relationship. A value close to -1 or 1 means that the variable and its indicators have a strong relationship (negative or positive relationship). The following are the results of the component matrix test for the Approved Claim (X3) variable.

Table 24. Component Matrix Test Results for Approved Claim Variables (X3)

Item	Component 1
X31	.651
X32	.719
X33	.882
X34	.860
X35	.747

Extraction Method: Principal Component Analysis

a. 1 component extracted

Source: SPSS Data Processing Results (2025)

Based on the results of the component matrix test, it can be seen that all indicators have a high correlation (above 0.5) with the factor. The magnitude of the correlation between the indicator and its factors is called factor loadings.

Interpretation of Factors

After conducting all stages of Exploratory Factor Analysis (EFA), it was found that X31, X32, X33, X34, and X35 can be grouped into 1 group called Approved Claims.

Multiple Linear Regression Coefficient Analysis

After all classical assumptions are met, multiple linear regression analysis can be performed. The following are the results of multiple linear regression obtained from the SPSS application.

Table 25. Regression Coefficients

Model	Unstandardized Coefficients		Standardized Coefficients Beta	t	Sig.
	B	Std. Error			
(Constant)	3.972E-14	.000		.	.
X11	2.467E-13	.000	.000	.	.
X12	7.741E-15	.000	.000	.	.
X13	-2.607E-13	.000	.000	.	.
X14	8.565E-17	.000	.000	.	.
X15	-1.925E-15	.000	.000	.	.
X21	4.037E-14	.000	.000	.	.
X22	-1.540E-14	.000	.000	.	.
X23	-1.076E-14	.000	.000	.	.
X24	-1.044E-15	.000	.000	.	.
X25	3.143E-15	.000	.000	.	.
X31	-1.205E-14	.000	.000	.	.
X32	-6.356E-16	.000	.000	.	.
X33	1.000	.000	.410	.	.
X34	1.000	.000	.389	.	.
X35	1.000	.000	.354	.	.

a. Dependent Variable: Y

Source: SPSS Data Processing Results (2025)

Based on the regression results from SPSS, the following is a regression equation formed from all coefficients (in the Unstandardized B column).

$$Y = 3.97 \times 10^{-14} + 0.142(X1) + 0.352(X2) + 0.455(X3)$$

$$\text{Customers' Repurchase Intention} = 3.97 \times 10^{-14} + 0.142 \text{ (Claim Knowledge)} + 0.352 \text{ (Process Claim)} + 0.455 \text{ (Approved Claim)}$$

Based on the above equation, it can be explained that:

- a) The constant of 3.97×10^{-14} states that if the variables Claim Knowledge, Process Claim and Approved Claim have a value of zero, then the Customer's Repurchase Intention will be worth 3.97×10^{-14} units.
- b) The Claim Knowledge regression coefficient (X1) of 0.142 states that every increase of one unit will increase Customer Repurchase Intent (Y) by 0.142 units. And vice versa, a decrease of one unit of Claim Knowledge (X1) by 0.142.
- c) The Process Claim regression coefficient (X2) of 0.352 states that every increase of one unit will increase the Customer's Purchase Intention (Y) by 0.352 units. And vice versa, a decrease of one Unit of Process Claim (X2) by 0.352.
- d) The Approved Claim regression coefficient (X3) of 0.455 states that every increase of one unit will increase the Customer's Repurchase Intention (Y) by 0.455 units. And vice versa, a decrease of one unit of Approved Claim (X3) of 0.455.

Based on the results of research on the Effect of Claim Services on the Increase in Sales of Insurance Products at PT. Jasaraharja Putera, found that the variables in claim services—namely Claim Knowledge, Process Claim, and Approved Claim—have a positive effect on Customer Repurchase Intention. This is reflected in the linear regression equation formed:

$$Y = 3.97 \times 10^{-14} + 0.142(X1) + 0.352(X2) + 0.455(X3)$$

where Y is the customer's buyback intention, and X1, X2, and X3 represent Claim Knowledge, Process Claim, and Approved Claim, respectively.

From these results, it can be concluded that all three aspects of claim service contribute to the customer's decision to repurchase insurance products. The highest regression coefficient is found in the Approved Claim (0.455), which indicates that the certainty or success of the claim is the most dominant factor in driving loyalty and repurchase decisions. This is logical considering that customers will feel more satisfied and trust the company if their claims can be approved smoothly.

Meanwhile, Process Claim also has a significant effect with a coefficient of 0.352. This signifies that an easy, fast, and transparent claims process is an important factor that drives customer convenience and trust. If this process is convoluted or time-consuming, then it is likely that customers will be reluctant to continue with their policy in the future.

The Claim Knowledge had the least influence (0.142) compared to the other two variables, although it still made a positive contribution. This shows that while the customer's understanding of the claims procedure is important, it is not a major factor in the repurchase decision-making. Most likely, the customer is more concerned with the end result than the process or his understanding of the system.

Overall, these findings provide important insights for the management of PT. Jasaraharja Putera said that improving the quality of claim services, especially in terms of the certainty of

claim approval and the efficiency of the process, has great potential to increase customer loyalty and boost sales of insurance products in the future. Therefore, the company's strategic focus should be directed to optimizing claim procedures and increasing the level of approval Transparent and fast claims.

CONCLUSION

The regression analysis revealed that claim knowledge (X1) had a coefficient of 0.142, indicating that each one-unit increase raised customer repurchase intention (Y) by 0.142 units (and vice versa); the claim process (X2) showed a stronger effect with a coefficient of 0.352; and approved claims (X3) exerted the greatest influence at 0.455, meaning a one-unit increase boosted Y by 0.455 units. All three variables positively affected repurchase intention at PT. Jasaraharja Putera. For future research, longitudinal studies could explore these relationships over time or incorporate moderating factors like digital service adoption to assess sustained impacts on insurance sales.

REFERENCES

Amtul Wahab, Begum, I. U., Divya, P., Sneha, P., Pinky, & Kavitha, P. (2024). A comprehensive study on life insurance at ICICI Prudential Life Insurance: Insights into customer perceptions and industry dynamics. *International Journal of Engineering Technology and Management Sciences*, 8(2). <https://doi.org/10.46647/ijetms.2024.v08i02.038>

Babuna, P., Yang, X., Gylbag, A., Awudi, D. A., Ngmenbelle, D., & Bian, D. (2020). The impact of COVID-19 on the insurance industry. *International Journal of Environmental Research and Public Health*, 17(16). <https://doi.org/10.3390/ijerph17165766>

Bhatia, R., & Jain, M. (2021). Customer understanding and trust in insurance claim processes. *Journal of Insurance Research*, 18(2), 112–124.

Cummins, J. D., & Weiss, M. A. (2020). The impact of technology on insurance claims and service quality. *The Geneva Papers on Risk and Insurance*, 45(2), 254–278.

Dube, J. P., & Hitsch, G. J. (2016). Quantifying the impact of claims service on insurance sales. *Marketing Science*, 35(1), 89–108.

Fang, Y., Tang, J., & Zhao, L. (2020). Transparency in insurance claim communication and customer trust. *Journal of Consumer Services*, 52, 101916. <https://doi.org/10.1016/j.jconserv.2020.101916>

Grace, M. F., & Klein, R. W. (2019). Consumer complaints and insurance regulation: Evidence from market conduct. *Journal of Insurance Issues*, 42(1), 1–27.

Gupta, S., Ghadallou, W., Pandey, D. K., & Sahu, G. P. (2022). Artificial intelligence adoption in the insurance industry: Evidence using the technology–organization–environment framework. *Research in International Business and Finance*, 63, 101757. <https://doi.org/10.1016/j.ribaf.2022.101757>

Jones, T. O., & Sasser, W. E. (2018). Why satisfied customers defect. *Harvard Business Review*, 73(6), 88–99.

Nema, D. G., & Choudhary, M. A. (2025). Exploring the impact of ripple effect in creating brand perception in service industry with special reference to insurance sector. *International Journal of Research and Scientific Innovation*, 12(5). <https://doi.org/10.51244/ijrsi.2025.120500184>

Nur, D. L., Soemitra, A., & Nasution, Y. S. J. (2025). Bancassurance strategy in increasing sales of Sharia life insurance products: A case study of collaboration between Prudential Syariah and BSI in Medan City. *Electronic Journal of Education, Social Economics and Technology*, 6(2). <https://doi.org/10.33122/ejeset.v6i2.1095>

Putri, K., Lestari, A. I., & Jannah, N. (2024). Analysis of the cycle selling skill system in increasing sales of health insurance products. *Ilomata International Journal of Management*, 5(3). <https://doi.org/10.61194/ijjm.v5i3.1219>

Rao, M., Shah, A., & Shah, V. (2023). Customer perception towards life insurance in Vadodara City. *International Journal for Research in Applied Science and Engineering Technology*, 11(2). <https://doi.org/10.22214/ijraset.2023.49292>

Reddy, R., & Jahangir, Y. (2015). Customer perception towards life insurance services in rural market. *Indian Journal of Applied Research*, 5(1).

Rejda, G. E., & McNamara, M. J. (2021). *Principles of risk management and insurance* (14th ed.). Pearson Education.

Sosa, I., & Sosa, S. (2025). Building an InsurTech ecosystem within the insurance industry. *Risks*, 13(6). <https://doi.org/10.3390/risks13060108>

Sugiyono. (2016). *Metode penelitian kuantitatif, kualitatif, dan R&D*. Alfabeta.

Syafrida Hasibuan, A. Z., Husugian, H., & Tambunan, K. (2023). Analisis sistem cycle selling skill dalam meningkatkan penjualan produk asuransi jiwa. *Jurnal Penelitian Ekonomi Manajemen dan Bisnis*, 2(4). <https://doi.org/10.55606/jekombis.v2i4.2551>

Wirtz, J., & Lovelock, C. (2018). *Services marketing: People, technology, strategy* (8th ed.). World Scientific.

Xie, X. (2022). Insurance industry and China's regional economic development. *Finance: Theory and Practice*, 26(1), 186–197. <https://doi.org/10.26794/2587-5671-2022-26-1-186-197>