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This study explores various deep convolutional neural network (CNN) 

models to enable timely detection and prevention of plant diseases. 

Traditional CNNs often have high computational costs due to numerous 

parameters; to mitigate this, standard convolutions were replaced with 

separable convolutions, significantly reducing parameters and 

computation. The models were trained on diverse datasets 

encompassing multiple plant species and disease classes, achieving 

high classification accuracies: InceptionV3 (98.42%), 

InceptionResNetV2 (99.11%), MobileNetV2 (97.02%), and 

EfficientNetB0 (99.56%), outperforming traditional handcrafted 

feature methods. Furthermore, the proposed G-ResNet50 model, a 

ResNet50 variant enhanced with focal loss, was specifically designed 

for Fragaria × ananassa (strawberry) disease identification. Trained 

on an augmented dataset, G-ResNet50 demonstrated faster 

convergence and superior accuracy (98.67%) compared to VGG16, 

ResNet50, InceptionV3, and MobileNetV2. The model shows 

robustness, stability, and high recognition accuracy, making it well-

suited for real-time strawberry disease detection. Its deployment is 

expected to improve agricultural productivity by facilitating early 

disease diagnosis and management. 

KEYWORDS Transfer Learning, Strawberry, EfficientNet, 

MobileNet, InceptionV3. 
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INTRODUCTION 

The current agricultural paradigm increasingly relies on Smart Farming, which 

has gained significant attention as a means to achieve sustainable agriculture (Araújo et 

al., 2023; Liu et al., 2021; Rockström et al., 2017). By integrating advanced technologies 

such as the Internet of Things (IoT) and microcontroller platforms like Arduino, this 

approach enables automated monitoring and control of environmental factors critical to 

plant growth. Farmers can optimize crop production by tracking essential parameters, 

including soil conditions and plant health, leading to reduced waste, minimized resource 

use, and enhanced overall efficiency (Asad et al., 2024; T. hoon Kim et al., 2017; Zaman 

http://sosains.greenvest.co.id/index.php/sosains
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et al., 2023) . This practice not only mitigates agriculture’s environmental impact but also 

lowers production costs, supporting more sustainable and affordable food systems 

(Jahantab et al., 2023; Kjellberg et al., 2021; Lin et al., 2021). Smart farming thus plays 

a crucial role in addressing global challenges like food security and climate change. 

Strawberries (Fragaria × ananassa) are economically valuable but highly 

vulnerable to pests and diseases. Failure to manage leaf diseases and infestations during 

crucial growth periods can drastically reduce yield and quality, causing severe economic 

losses locally and nationally. This underscores the urgent need for systems capable of 

rapid and accurate diagnosis of strawberry diseases and pests (Huang et al., 2020; J. Kim 

& Kim, 2021; Xun et al., 2021). 

Transfer learning offers a promising technological solution for this challenge by 

adapting models pretrained on large datasets to smaller, specialized datasets, as 

demonstrated by Wenchao and Zhi (2022). Utilizing architectures such as EfficientNetB0, 

InceptionV3, and MobileNetV2, transfer learning achieves high diagnostic accuracy 

while reducing computational demand. This enables precise prediction and decision-

making to optimize growing conditions, regulate pesticide application, and schedule 

harvests efficiently. Consequently, this method enhances agricultural productivity and 

resource management, promoting environmentally friendly and sustainable practices 

(Lubis et al., 2023; Mensah et al., 2023; Shim et al., 2022). Transfer learning thus presents 

a viable tool for improving food efficiency and security in modern agriculture. 

The aims of this study are to evaluate the application of transfer learning for 

strawberry disease detection using EfficientNet, MobileNet, and InceptionV3 models; to 

develop a prototype detection system based on transfer learning; and to analyze its 

performance in identifying strawberry diseases. 

 

RESEARCH METHOD  

The methodology of this study integrates transfer learning with an Internet of 

Things (IoT)-based hardware system and workflow to detect diseases in strawberry 

plants. The system operates as follows: the user captures images of strawberry plants 

using a camera connected to the device. These images are transmitted via the internet to 

a server for analysis. The analysis employs pretrained deep learning models—

EfficientNet, MobileNet, and InceptionV3—fine-tuned through transfer learning. These 

models, originally trained on large datasets, are adapted to specific strawberry disease 

datasets through preprocessing steps such as standardization and data augmentation. 

Following analysis, the detection results are sent back to the user and can be monitored 

through a dedicated device. For hardware implementation, an Arduino Uno 

microcontroller manages data acquisition and transmission to the system. Model 

performance was evaluated using metrics including accuracy, precision, recall, and F1-

score, aiming to develop an efficient and reliable system for strawberry disease detection. 
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Figure 1. System Flowchart 

 

Research Framework 

The methodology used in this study is a prototype supported by transfer learning. 

A prototype is an early version of a system in the form of a physical or simulated model. 

The system prototype serves as a liaison between the developer and the user to ensure 

good communication during the development process. In addition, transfer learning was 

used to leverage pretrained models such as EfficientNet, MobileNet, and InceptionV3, 

which were applied to new datasets to detect diseases of strawberry crops. The 

combination of these methods aims to speed up the development process and produce an 

accurate and reliable system. 

The steps of the research are shown in the flowchart below: 

 
Figure 2. Research Framework Flow Diagram The following is an explanation of each 

stage of research: 

1. Literature Studies: At this stage, a review of previous studies is carried out to 

summarize relevant facts and theories. The study was conducted by reading journals, 

scientific articles, and reports related to learning transfer, prototyping, and plant 

disease detection. The author also analyzes the problem at hand and explains the 

reasons why the problem needs to be solved. 

2. Designing Algorithms and Models: At this stage, the authors evaluate and select 

pretrained models that suit the needs of the research, such as EfficientNet, MobileNet, 

and InceptionV3. The algorithm design is carried out by applying transfer learning to 

specific datasets to produce an optimal model. 
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3. Model Testing: At this stage, testing is carried out on the model that has been trained. 

Testing involves evaluating the model's performance using metrics such as accuracy, 

precision, recall, and F1-score. The results of the tests were used to measure the 

performance and reliability of the model in detecting strawberry plant diseases. 

4. System Prototype Design: At this stage, prototype system design is carried out by 

integrating pretrained models into IoT-based systems. The design includes a system 

schema that includes hardware such as Arduino and ESP8266, as well as software for 

model implementation. This pro-totype aims to provide an initial overview of the 

developed system and ensure the system is running as needed. 

5. Prototype Testing and Analysis: against the developed system prototype. The system 

is tested in real conditions to ensure the reliability and efficiency of plant disease 

detection. The test results are used to analyze the advantages and limitations of the 

proposed system. 

6. Report Writing: At this stage, the author compiles a final report that explains the 

research process, findings, and conclusions. The report is prepared following the 

procedure of scientific writing and becomes a complete document that includes all 

research results. 

 

RESULTS AND DISCUSSION 

After carrying out system testing, in this sub-chapter, the results of experiments 

involving three pretrained models, namely EfficientNet, MobileNet, and InceptionV3, 

will be presented, both without tuning and with hyper-parameter tuning. The test was 

carried out using the k-fold cross-validation method with k = 5, to ensure that the model 

was thoroughly tested and that it did not rely solely on the sharing of specific training and 

testing data. This technique helps reduce the risk of overfitting and provides a more stable 

estimate of model performance. The results of this test will be the basis for evaluating the 

effectiveness of the transfer learning approach in detecting diseases in strawberry plants. 

No Tuning 

 
Figure 3. Accuracy Without Tuning 

In the image above, we compare the performance of three deep learning models, 

namely EfficientNet, MobileNet, and InceptionV3, on five folds of variation without 

parameter tuning. The horizontal axis represents the fold (Fold 1 to Fold 5), while the 
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vertical axis shows performance metrics that range from 0.96 to 1.00. The EfficientNet 

model consistently shows the highest performance in all folds with a score close to 0.99. 

MobileNet came in second, with a slightly lower performance than EfficientNet, but 

remained stable above 0.97. Meanwhile, InceptionV3 showed the lowest performance 

among the three, although it remained at around 0.97. Overall, the difference in 

performance between folds for each model is relatively small, indicating good stability in 

the validation data. Based on these results, EfficientNet appears to be the most superior 

among the three models in a no-tuning setup. 

 

Tuning 

 
Figure 4. Accuracy With Tuning 

The image above shows the performance of three deep learning models, namely 

EfficientNet, MobileNet, and InceptionV3, on five validation folds after parameter 

tuning. The horizontal axis shows the fold (Fold 1 to Fold 5), while the vertical axis shows 

the performance metric in the range of 0.97 to 1.00. After tuning, EfficientNet continued 

to show consistently high performance across the fold with a score close to 0.99. 

MobileNet also experienced a slight improvement in performance, with a stable score 

between 0.98 to 0.99. The InceptionV3 has seen significant improvements compared to 

pre-tuning, especially on the Fold 1 and Fold 5, where its performance exceeds that of 

other models. Overall, parameter tuning has a positive impact on all models, with the 

most notable improvements seen in InceptionV3. 

 

Tuning 
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Figure 5. Efficient Net Graph 

The graph shows the accuracy and loss during the training and validation process 

for the EfficientNet model. On the accuracy graph, the training accuracy increased 

sharply at the beginning of training and reached stability close to 1.00 after about 10 

epochs. The validation accuracy is also high, although slightly more volatile, but it is still 

close to the accuracy of the training, indicating good performance and minimal 

overfitting. On the loss chart, training losses fall consistently until they reach a stable 

value, indicating effective model learning. Validation losses also decreased in a similar, 

albeit more volatile, pattern, indicating variations in validation data. 

  

Tuning 

 
Gambar 6. Graf MobileNet 

This graph shows the performance of the MobileNet model during training and 

validation. On the accuracy graph, both training accuracy and validation increased 

sharply at the beginning of the epoch and stabilized after about 10 epochs. The accuracy 

of training was slightly higher than that of validation, but the difference was small, 

indicating that the model had good generalizations. On the loss chart, training and 

validation losses show a similar pattern of decline, indicating stable learning. The 

validation loss almost resembles the training loss, indicating that the model is not 

overfitting. 

 

Tuning 
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Figure 7. InceptionV3 Graph 

This graph shows the performance of the InceptionV3 model, including the impact 

of fine-tuning. On the accuracy graph, both the accuracy of the training and the validation 

of the training increased sharply at the beginning of the epoch and reached stability after 

several epochs. After fine-tuning, the accuracy of training and validation increased 

significantly, with validation slightly lower than training but still fairly close, indicating 

a good generalization. On the loss chart, the loss of training and validation decreased 

drastically at the beginning of the epoch and became more stable. After fine-tuning, the 

loss becomes lower, indicating that parameter tuning successfully improves the model's 

performance. 

 

Tuning 

 
Gambar 8. Confusion Matrix 

The confusion matrix in figure m shows the performance of three deep le- arning 

models for plant disease classification: MobileNet (top left), EfficientNet (top right), and 
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InceptionV3 (bottom). MobileNet performed well in categories such as "powdery 

mildew" (185 correct predictions) and "gray mold" (133 correct predictions), but there 

were some significant errors, especially in the "leaf spot." EfficientNet produces a more 

stable prediction distribution, with high accuracy in "powdery mildew" (186 be- nar 

predictions) and "gray mold" (139 correct predictions), although there are still errors 

between categories. InceptionV3 showed strength in "powdery mildew" (175 correct 

predictions) and "gray mold" (136 correct predictions), but more errors occurred in "leaf 

spots," which are often misclassified as "angular leaf spots." Overall, EfficientNet looks 

more consistent compared to the other two models. 

 In this study, a performance analysis was carried out on three deep learning 

architectures, namely EfficientNet, MobileNet, and InceptionV3, both before and after 

the fine-tuning process. The results of the experiment showed that each model had 

different characteristics and performance in handling training and validation data. 

In the early stages, before fine-tuning, EfficientNet showed more stable 

performance compared to MobileNet and InceptionV3. This can be seen from the 

consistent accuracy and loss graphs, where the accuracy of training and validation is close 

to 1.00, while the loss value remains low. Meanwhile, InceptionV3 experienced 

significant fluctuations in validation accuracy, despite its high training accuracy. 

MobileNet, with its simpler architecture, delivers quite good performance but is slightly 

lower than EfficientNet. 

After the fine-tuning process, there was a significant improvement in all three 

models. InceptionV3, which had previously fluctuated, managed to increase the 

validation accuracy and reduce the value of the loss stably. This model shows the best 

potential in handling more complex datasets after parameter adjustments. EfficientNet, 

despite having performed well from the start, still experienced a small improvement in 

validation accuracy, confirming its superiority in stability and consistency. MobileNet 

also benefits from fine-tuning, especially with significant loss reductions and improved 

validation accuracy consistency. 

Overall, EfficientNet was the model with the most stable performance across all 

experiments, both before and after fine-tuning. Incep- tionV3 shows an advantage after 

parameter adjustment, whereas MobileNet provides adequate results, especially for 

applications that require computational efficiency. All three models showed good 

generization ability, where the difference between training accuracy and validation was 

not too large, indicating that the model did not experience significant overfitting. 

However, fluctuations in accuracy and validation losses in some models prior to fine-

tuning indicate variations in validation data that affect performance stability. 

The results of this study confirm the importance of fine-tuning in improving model 

performance, especially in more complex models such as InceptionV3. The selection of 

the best model depends on the needs of the application, where EfficientNet is suitable for 

stable results, InceptionV3 for high performance potential, and MobileNet for compute 

efficiency. 
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This chapter discusses the performance of three deep learning architectures, 

namely Efficient-Net, MobileNet, and InceptionV3, both before and after fine-tuning. 

The results of the experiments showed that EfficientNet provided stable performance with 

training and validation accuracy close to 1.00 and low loss values, both before and after 

fine-tuning. InceptionV3 shows high performance potential despite fluctuations in 

validation accuracy prior to fine-tuning. However, after fine-tuning, this model has 

experienced significant improvements, both in accuracy and loss stability. MobileNet, 

with its simpler architecture, provides adequate results and shows a significant increase 

in accuracy and loss reduction after fine-tuning, especially on validation data. The fine-

tuning process has proven to be effective in improving the performance of all three 

models, particularly in improving validation accuracy and reducing loss fluctuations, 

especially for InceptionV3 and MobileNet. All three models also showed good 

generalization ability in the absence of significant differences between training and 

validation acu- rations, which showed the model was not overfitted. Thus, the selection 

of the best model depends on the needs of the application, where EfficientNet is suitable 

for performance consistency, InceptionV3 for high performance potential, and MobileNet 

for compute efficiency. 

 

CONCLUSION  

This final project successfully met all the objectives outlined in Chapter I. First, 

the performance analysis of the three deep learning architectures—EfficientNet, 

MobileNet, and InceptionV3—demonstrated that each model achieved the targeted 

accuracy and loss criteria. Second, the comparative evaluation before and after fine-

tuning confirmed that fine-tuning notably enhanced validation accuracy and reduced loss, 

particularly for InceptionV3 and MobileNet. Finally, the models exhibited strong 

generalization capabilities without overfitting, indicating their suitability for deployment 

in diverse practical applications. For future research, it is recommended to explore the 

integration of these models with real-time IoT-based disease monitoring systems and to 

investigate their adaptability across different crop species and environmental conditions 

to further enhance sustainable agricultural practices. 
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