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ABSTRACT 

This study focuses on the classification of tire tread patterns using machine learning and deep learning 

approaches, emphasizing Logistic Regression (LR) and Support Vector Machine (SVM) combined with feature 

extraction methods like Inception V3, VGG-16, and VGG-19. Results indicate that Inception V3 outperformed 

other feature extraction methods, yielding the highest classification accuracy (CA) of 93.2% when used with 

SVM. SVM demonstrated superior robustness and adaptability, especially in handling complex data, as 

evidenced by its high AUC values (up to 0.987) across multiple configurations. Logistic Regression, while 

slightly less robust, performed consistently well with simpler features, achieving stable metrics with VGG-16 

(AUC: 0.976, CA: 90.7%). These findings highlight the importance of selecting appropriate feature extraction 

and classification combinations to optimize performance. The study recommends using Inception V3 with SVM 

for high-accuracy applications and Logistic Regression for scenarios prioritizing computational efficiency. 

These insights contribute to developing adaptive and efficient tire classification systems suitable for diverse 

road and environmental conditions. 
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INTRODUCTION 

This study focuses on the classification of tire tread patterns using machine learning and 

deep learning approaches, emphasizing Logistic Regression (LR) and Support Vector Machine 

(SVM) combined with feature extraction methods like Inception V3, VGG-16, and VGG-19. A 

tire is a device that covers the wheels of a vehicle and plays a crucial role in reducing vibrations 

caused by road surface irregularities, protecting wheels from wear and damage, and providing 

stability between the vehicle and the ground to enhance acceleration and facilitate movement 

(A.P et al., 2022; Barbosa & Magalhães, 2015; Dong et al., 2017; Li et al., 2018; Liu et al., 

2019; Zhang et al., 2022). Tires are essential components for driving safety and performance, 

as correct tire selection improves driver safety by preventing slides, reducing vehicle operating 

costs, enhancing performance, and simplifying maintenance. Each tire’s tread is specifically 

designed to suit particular road conditions, providing optimal traction on both dry and wet 

surfaces. According to Smith et al. (2020), tire tread pattern directly affects vehicle stability 

and fuel efficiency. Tire tread pattern classification is critical for performance analysis, 

particularly for detecting wear or mismatches that can increase accident risk. For example, 

Hasegawa et al. (2010) demonstrated that optimal tread pattern design reduces aquaplaning 

risk by efficiently channeling water from the tire-road contact area, and Saka et al. (2012) 

http://sosains.greenvest.co.id/index.php/sosains
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discussed how tire geometry and tread depth influence traction on various surfaces such as wet 

asphalt, gravel, and mud. 

With advances in artificial intelligence, machine learning methods are increasingly 

applied to image processing for automatic tire tread pattern classification. Convolutional 

Neural Networks (CNNs) have become popular for image classification in the automotive 

industry: Krizhevsky et al. (2017) noted that CNNs extract important image features more 

effectively than traditional methods. CNN models such as VGG-16, VGG-19, and Inception V3 

have demonstrated effectiveness in pattern recognition across various industries. VGG-16 and 

VGG-19 offer layered architectures enabling highly accurate feature mapping, while Inception 

V3 provides computational efficiency through factorized convolutions. Besides CNNs, 

classification algorithms like Logistic Regression and Support Vector Machine (SVM) are 

widely used in image processing. Logistic Regression is a statistical method commonly used 

for binary or multi-class classification, based on probability to categorize objects. Meanwhile, 

as described by Cortes & Vapnik (1995), SVM effectively handles high-dimensional data and 

achieves optimal class separation via hyperplanes. Both methods have been applied in pattern 

recognition and image analysis in the vehicle industry to detect tire tread wear and optimize 

tread design, contributing to driving safety. 

Combining deep learning with machine learning is a growing approach in object 

classification, including tire tread analysis. According to LeCun et al. (2015), deep learning 

enables high-level feature extraction, whereas machine learning algorithms such as Logistic 

Regression and SVM perform superior classification using these extracted features. Thus, 

integrating CNNs as feature extractors with SVM and Logistic Regression classifiers enhances 

accuracy and efficiency. This study evaluates the performance of such combined models in 

automatically classifying tire lane patterns using images from different road conditions. 

Features extracted from VGG-16, VGG-19, and Inception V3 models serve as inputs for 

Logistic Regression and SVM algorithms to classify tire tracks. He et al. (2019) found that CNN 

feature extraction improves classification accuracy by generating more representative image 

features than traditional methods. By experimenting on tire image datasets, this research 

assesses the accuracy and effectiveness of each model combination and compares the 

performance of Logistic Regression versus SVM in tire track classification. 

This research aims to develop an automatic classification system to assist the automotive 

industry in identifying and analyzing tire tread patterns quickly and efficiently. Given the rising 

demand for predictive vehicle maintenance technologies, the study contributes to AI-based tire 

analysis methods. It evaluates not only classification accuracy but also processing speed and 

efficiency on large datasets, offering a reference for advanced, automated tire inspection 

systems in the automotive sector. 

Related research shows that Convolutional Neural Networks (CNNs) are often applied 

for feature extraction from tire images, followed by classification using SVM, Logistic 

Regression, or Random Forest methods. Krizhevsky et al. (2017) highlighted CNNs’ 

superiority in image processing due to automatic high-level feature extraction without manual 

feature engineering. CNN applications in automotive contexts include tire wear detection, 

brand identification, and groove classification. VGG-16, VGG-19, and Inception V3 are favored 

CNN models due to their deep architectures capturing complex image patterns. 
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Studies comparing CNNs to traditional machine learning classifiers for tire pattern 

recognition (He et al. 2019; Wang et al. 2021) reaffirm that combining CNN feature extraction 

with SVM typically improves accuracy, especially with complex, high-dimensional features. 

Conversely, Logistic Regression remains competitive when features are simpler, offering faster 

computation and easier interpretation. Smith et al. (2020) noted that while VGG models yield 

high accuracy, Inception V3 provides better computational speed without significant accuracy 

loss, hence this study’s focus on these models. 

Support Vector Machine (Cortes & Vapnik, 1995) is praised for its ability to handle high-

dimensional data and optimize decision boundaries, enhancing image classification accuracy 

across domains including medical images and handwriting recognition. In tire groove 

classification, SVM improves accuracy compared to purely neural network-based methods. 

Logistic Regression also plays a role in probabilistic pattern analysis. Hosmer & 

Lemeshow (2000) describe its use in multi-category classification based on predictor variables. 

While performing slightly worse than SVM or CNN classifiers in some tire studies (Li et al. 

2018), it remains valuable for rapid processing and straightforward results interpretation. 

CNN-based techniques extend to related applications such as road pattern recognition 

and tire characteristic classification. Zhao et al. (2019) utilized CNN combined with 

morphology-based segmentation to differentiate tire groove textures and shapes, which 

traditional manual methods struggle to capture. 

Dataset quality and image preprocessing critically influence classification outcomes. 

Zhang et al. (2020) reported that augmentation techniques like rotation, flipping, and contrast 

adjustment can boost classification accuracy by up to 10%, important given the variable 

orientations and lighting in tire images. This study adopts normalization, data augmentation, 

and contrast enhancement to improve groove pattern classification performance. 

Key findings of this study reveal that the combination of Inception V3 and SVM achieves 

the highest accuracy (93.2%) and AUC (0.987), underscoring SVM’s advantages with complex 

data. Meanwhile, Logistic Regression combined with VGG-16 remains favorable for 

computational efficiency. The study’s dataset and preprocessing methods tailor to real-world 

scenarios, delivering practical AI solutions for automated tire inspection. 

Overall, combining CNN feature extraction with machine learning classifiers like SVM 

and Logistic Regression shows strong potential in tire groove classification. Prior research 

confirms CNNs extract superior features, while SVM and Logistic Regression yield more 

optimal classification than purely neural network classifiers. This study integrates these 

strengths for vehicle tire groove pattern classification, leveraging optimally processed datasets 

to enhance accuracy and efficiency. In doing so, it contributes academically to AI in automotive 

research and offers industry-ready, innovative AI-based tire analysis methods, with model 

selection and performance analyses serving as valuable guides for developing advanced tire 

tread pattern classification systems. 

 

RESEARCH METHODS 

A. Equipment used 

To analyze the objects in this study using the following tools: 

1. Internet 

2. laptop with specifications 



Eduvest – Journal of Universal Studies 

Volume 5 Number 8, August, 2025 

Classify a path on tire by using Logistic Regression and Support Vector Machine (SVM) Based on 

VGG-16, VGG-19, and INCEPTION V3 Modes     9714 

 

 
Figure 1. Illustration of the equipment used 

Source: Research document 

 

B. Object Capture 

Images are selected and taken through the internet browsing process with the help of 

google images. The image capture process is done by screencapturing the object to be 

classified. The objects taken are images of tire grooves which are grouped into 3 (three) 

parts, namely: symmetrical grooves, asymmetrical grooves, and directional grooves. 

C. Tire Groove Type/Pattern 

There are 3 (three) types of tire groove types that are classified in this article, which 

can be seen in the following figure: 

 

 
 

Figure 2. Tire groove/pattern type 
Source: Research document 

 

 

 

 

D. Research Flow 
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Figure 3. Research Flowchart 

Source: Research document 
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1. Data Collection (Symmetrical, Asymmetrical, Unidirectional Tire Pattern) 

The first step was to collect data on tire pattern images from three main categories: 

symmetrical, asymmetrical, and unidirectional. Symmetrical patterns have identical designs 

on both sides of the center, asymmetrical patterns differ between the inner and outer sides, 

while unidirectional patterns are designed to move in one specific direction. The data will 

be collected through capturing images using screen capture and categorized based on the 

type of pattern. This step includes data cleaning to ensure accuracy, such as removing 

duplicate or irrelevant images. The resulting dataset should be representative and of high 

quality to support subsequent analysis. 

2. Image Embedding (VGG-16, VGG-19, Inception V3) 

At this stage, the important features of the tire pattern image are extracted using deep 

learning models and in this artiker using 3 types namely VGG-16, VGG-19, and Inception 

V3. These models help convert the image into a numerical representation (embedding) that 

reflects the visual characteristics of the image. The process starts with preprocessing, such 

as resizing the image to fit the model input, pixel normalization, and data augmentation if 

needed. The image is then processed by the model to produce an embedding at a specific 

layer, usually the final layer before the output. This representation becomes the basis for the 

next stage of classification. 

3. Classification (SVM, Logistic Regression) 

The next step after the images have been extracted is to classify the tire patterns using 

machine learning algorithms, namely Support Vector Machine (SVM) and Logistic 

Regression. SVM serves to separate the data with maximum margin for proper 

classification, while Logistic Regression is used to model the relationship between features 

and target categories. The data is divided into training and test data to train the model and 

measure its performance. The model categorizes tire patterns into classes such as optimal, 

moderate, or poor. The classification results are an initial indicator to assess the 

effectiveness of the model on the dataset. 

4. Result Analysis 

Evaluating the classification results to assess the performance of the model is an 

activity at this stage. The analysis is done by comparing the model predictions with the 

actual labels and calculating evaluation metrics such as accuracy, precision, recall, and F1-

score. The evaluation results are used to identify the strengths and weaknesses of the model, 

such as bias towards certain classes or difficulty in recognizing certain patterns. If the model 

performance is not optimal, improvements are made, for example through hyperparameter 

tuning or data addition. This stage ensures that the developed system can meet the specific 

needs of the application. 

5. End 

The last step is to summarize the results of the analysis and provide recommendations 

for the next steps. The conclusion contains an assessment of the accuracy of the model, the 

most effective algorithm implementation, and the necessary improvement steps. In addition, 

these results can be applied in real product development, such as the design of more optimal 

tire patterns for specific road conditions. By taking a systematic approach, this stage ensures 

that the research produces solutions that are relevant and practically applicable. 
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RESULT AND DISCUSSION 

a. Classification Model 

The classification process is carried out using orange soft software, with import data as 

many as 118 images with 3 types of tire grooves which can be seen in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pigure 4. Classification model with logistic regression and support vector machine 

Source: The results of the Orange soft analysis 

  

The Image embedding process is carried out by classifying the 118 that have been 

imported into the orange.Embedder application is used by using 3 (three) modes namely: 

Inception V3, VGG-16 and VGG-19. Furthermore, to see the distribution of data, you can see 

Figure 5, namely this diagram can be used for cluster or distribution analysis in a dataset with 

three different classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Result of Feature Extraction 

Source: The results of the Orange soft analysis 
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b. Logistic Regression Model 

The learning models used are Logistic Regression and SVM. Logistic Regression uses 

a sigmoid function to convert the model output into a probability value between 0 and 1. 

The sigmoid function has the formula σ(z)=11+e−z\sigma(z) = \frac{1}{1 + e^{-

z}}σ(z)=1+e−z1, where zzz is a linear combination of input features and weights 

(z=wTx+bz = w^T x + bz=wTx+b).  

 

W : Weight Vector 

X : Input Feature Vector 

b : Bias 

 

The probabilities generated from the sigmoid can be converted into class predictions by 

setting a certain threshold, usually 0.5. In the context of this dataset, Logistic Regression 

performed well with metrics such as AUC of 0.978 and recall of 0.915, indicating that the 

model has an excellent ability to identify positive classes. 

Support Vector Machine (SVM) is a machine learning algorithm used for classification 

and regression tasks by finding the best hyperplane that separates the classes in a dataset. SVM 

maximizes the margin between the separating hyperplane and the closest data from each class, 

called support vectors. The algorithm can work linearly or non-linearly, depending on the use 

of kernels such as linear, polynomial, or radial basis function (RBF). RBF kernels, for example, 

allow SVMs to map data to a higher dimensional space to handle data that cannot be linearly 

separated. In this evaluation, SVM showed superior performance with an AUC of 0.981, 

classification accuracy of 93.2%, and recall of 93.2%, demonstrating its excellent ability to 

separate classes and provide accurate predictions even under complex data conditions. The 

data can be seen in Figure 6, Figure 7 and Figure 8. 

 

 

 

 

 

 

 

Figure 6. Result Test and score type Logistic Regression and SVM Inception V3 

Source: Hasil Inception V3 (AUC 0.987) 

 

 

 

 

 

 

 

Figure 7. Result Test and score type Logistic Regression and SVM VGG-16 

Result: Result of VGG-16 (AUC 0.976) 
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Figure 8. Result Test and score type Logistic Regression and SVM VGG-19 

Source: VGG-19 Result (AUC 0.962) 

Based on the three uploaded model evaluation figures, there are performance variations 

between Logistic Regression (LR) and Support Vector Machine (SVM) in each experimental 

configuration. In the first figure, Logistic Regression shows competitive AUC (0.978), CA 

(0.915), and Recall (0.915) values, but SVM excels in almost all metrics with AUC 0.981, CA 

0.932, and Recall 0.932. This shows that SVM has an advantage in separating data and 

handling more complex cases than Logistic Regression on this dataset. 

In the second figure, Logistic Regression continues to perform well with an AUC of 

0.976 and other metric values that are consistent at 0.907. However, SVM experienced a 

decline in performance with an AUC of 0.960 and other metrics, such as CA and Recall, 

hovering around 0.881. Meanwhile, in the third figure, there is a variation in performance 

depending on the modeling order. Logistic Regression recorded an AUC of 0.987 and 

classification metrics above 0.9, while SVM only achieved an AUC of 0.962 and other metrics 

in the range of 0.847. This comparison shows that Logistic Regression tends to be more stable 

across experiments, while SVM is more dependent on the data configuration or kernel 

parameters used. 

 

Based on the evaluation results shown, there are significant performance differences 

between Logistic Regression (LR) and Support Vector Machine (SVM) in combination with 

different feature extraction methods (Inception V3, VGG-16, and VGG-19). Logistic 

Regression showed consistent performance when combined with Inception V3 (AUC: 0.978, 

CA: 0.915) and VGG-16 (AUC: 0.976, CA: 0.907), with similar F1-score, Precision, and 

Recall values (0.915 for Inception V3 and 0.907 for VGG-16). This combination shows that 

Logistic Regression is able to perform well on features that are deeply extracted by models 

such as Inception V3 and VGG-16. However, the performance of Logistic Regression 

decreased when using VGG-19, as seen from the AUC value of 0.962 and CA of 0.847. 

Precision, Recall, and F1-score values in the combination of Logistic Regression and VGG-19 

are also lower than the combination with the other two models. This shows that Logistic 

Regression is more sensitive to the quality of the extracted features, with the best performance 

when using Inception V3. The more complex features generated by VGG-19 may not be fully 

utilized by Logistic Regression, which is better suited for data with a simpler structure. 

Meanwhile, SVM overall showed higher performance than Logistic Regression on some 

feature combinations. When using Inception V3, SVM achieved the highest AUC (0.981) with 

a CA value of 0.932 and F1-score of 0.933, confirming that SVM was able to effectively utilize 

the features extracted by Inception V3 to improve classification accuracy. This combination 
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also provided a higher MCC value (0.899), demonstrating the SVM's ability to handle data 

imbalance. In combination with VGG-19, SVM also showed competitive performance (AUC: 

0.987, CA: 0.907), which was similar to Logistic Regression on the same features. However, 

the performance of SVM decreased slightly when using VGG-16, as seen from AUC 0.960 

and CA 0.881. Even so, the Precision and Recall values remained higher than Logistic 

Regression on the same combination, indicating that SVM is more flexible in utilizing features 

from various extraction methods. 

 

Figure 9. Comparison of logistic Regression result and SVM on Three Feature 

Extraction 

Model Feature 

Extraction 

Area 

Under 

ROC 

Curve 

(AUC) 

Classification 

Accuracy (CA) 

F1 Precision Recall MCC 

Logistic 

Regression 

Inception 

V3 

0.978 0.915 0.915 0.915 0.915 0.873 

VGG-16 0.976 0.907 0.907 0.907 0.907 0.860 

VGG-19 0.962 0.847 0.847 0.847 0.847 0.771 

Support 

Vector 

Machine 

(SVM) 

Inception 

V3 

0.981 0.932 0.933 0.934 0.934 0.892 

VGG-16 0.960 0.881 0.882 0.882 0.881 0.826 

VGG-19 0.987 0.907 0.911 0.911 0.907 0.861 

Source: Comparative synthesis of researchers based on the results of the entire experiment 

These results show that the choice of feature extraction method has a significant impact 

on the performance of the classification model. Inception V3 gave the best results for both 

algorithms (Logistic Regression and SVM), with SVM excelling in almost all evaluation 

metrics. SVM proved to be more robust in utilizing different types of features to produce more 

accurate predictions than Logistic Regression. However, Logistic Regression is more stable on 

simpler features such as VGG-16. This is especially important for applications that require high 

efficiency in computational processes, where simpler models can provide adequate results. In 

conclusion, the combination of Inception V3 and SVM is recommended for the tire pattern 

classification application in this study, as it provides the best balance between accuracy, 

precision, and model stability. This combination also provides better flexibility in dealing with 

complex data challenges, such as tire patterns with high texture variations. 

 

CONCLUSION 

This research demonstrates that the effectiveness of tire pattern classification models 

largely depends on the specific combination of feature extraction techniques and classification 
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algorithms employed. Among the methods evaluated, Inception V3 emerged as the most 

effective feature extractor, yielding superior results when paired with both Support Vector 

Machine (SVM) and Logistic Regression. Overall, SVM outperformed Logistic Regression by 

offering greater robustness and higher evaluation metrics, particularly when combined with 

Inception V3 and VGG-19. Nevertheless, Logistic Regression showed competitive and stable 

performance on simpler features such as those extracted by VGG-16, making it a viable option 

when computational efficiency is a priority. The study recommends using the Inception V3 and 

SVM combination for applications demanding high accuracy, with Logistic Regression as an 

alternative for resource-constrained environments. Future research could explore integrating 

emerging feature extraction architectures and investigate adaptive hybrid models that 

dynamically select the optimal classifier based on real-time data complexity and computational 

resources, further enhancing classification accuracy and efficiency across diverse road 

conditions. 
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