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ABSTRACT

This study focuses on the classification of tire tread patterns using machine learning and deep learning
approaches, emphasizing Logistic Regression (LR) and Support Vector Machine (SVM) combined with feature
extraction methods like Inception V3, VGG-16, and VGG-19. Results indicate that Inception V3 outperformed
other feature extraction methods, yielding the highest classification accuracy (CA) of 93.2% when used with
SVM. SVM demonstrated superior robustness and adaptability, especially in handling complex data, as
evidenced by its high AUC values (up to 0.987) across multiple configurations. Logistic Regression, while
slightly less robust, performed consistently well with simpler features, achieving stable metrics with VGG-16
(AUC: 0.976, CA: 90.7%). These findings highlight the importance of selecting appropriate feature extraction
and classification combinations to optimize performance. The study recommends using Inception V3 with SVM
for high-accuracy applications and Logistic Regression for scenarios prioritizing computational efficiency.
These insights contribute to developing adaptive and efficient tire classification systems suitable for diverse
road and environmental conditions.
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INTRODUCTION

This study focuses on the classification of tire tread patterns using machine learning and
deep learning approaches, emphasizing Logistic Regression (LR) and Support Vector Machine
(SVM) combined with feature extraction methods like Inception V3, VGG-16, and VGG-19. A
tire is a device that covers the wheels of a vehicle and plays a crucial role in reducing vibrations
caused by road surface irregularities, protecting wheels from wear and damage, and providing
stability between the vehicle and the ground to enhance acceleration and facilitate movement
(A.P et al., 2022; Barbosa & Magalhaes, 2015; Dong et al., 2017; Li et al., 2018; Liu et al.,
2019; Zhang et al., 2022). Tires are essential components for driving safety and performance,
as correct tire selection improves driver safety by preventing slides, reducing vehicle operating
costs, enhancing performance, and simplifying maintenance. Each tire’s tread is specifically
designed to suit particular road conditions, providing optimal traction on both dry and wet
surfaces. According to Smith et al. (2020), tire tread pattern directly affects vehicle stability
and fuel efficiency. Tire tread pattern classification is critical for performance analysis,
particularly for detecting wear or mismatches that can increase accident risk. For example,
Hasegawa et al. (2010) demonstrated that optimal tread pattern design reduces aquaplaning
risk by efficiently channeling water from the tire-road contact area, and Saka et al. (2012)
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discussed how tire geometry and tread depth influence traction on various surfaces such as wet
asphalt, gravel, and mud.

With advances in artificial intelligence, machine learning methods are increasingly
applied to image processing for automatic tire tread pattern classification. Convolutional
Neural Networks (CNNs) have become popular for image classification in the automotive
industry: Krizhevsky et al. (2017) noted that CNNs extract important image features more
effectively than traditional methods. CNN models such as VGG-16, VGG-19, and Inception V3
have demonstrated effectiveness in pattern recognition across various industries. VGG-16 and
VGG-19 offer layered architectures enabling highly accurate feature mapping, while Inception
V3 provides computational efficiency through factorized convolutions. Besides CNNs,
classification algorithms like Logistic Regression and Support Vector Machine (SVM) are
widely used in image processing. Logistic Regression is a statistical method commonly used
for binary or multi-class classification, based on probability to categorize objects. Meanwhile,
as described by Cortes & Vapnik (1995), SVM effectively handles high-dimensional data and
achieves optimal class separation via hyperplanes. Both methods have been applied in pattern
recognition and image analysis in the vehicle industry to detect tire tread wear and optimize
tread design, contributing to driving safety.

Combining deep learning with machine learning is a growing approach in object
classification, including tire tread analysis. According to LeCun et al. (2015), deep learning
enables high-level feature extraction, whereas machine learning algorithms such as Logistic
Regression and SVM perform superior classification using these extracted features. Thus,
integrating CNNs as feature extractors with SVM and Logistic Regression classifiers enhances
accuracy and efficiency. This study evaluates the performance of such combined models in
automatically classifying tire lane patterns using images from different road conditions.

Features extracted from VGG-16, VGG-19, and Inception V3 models serve as inputs for
Logistic Regression and SVM algorithms to classify tire tracks. He et al. (2019) found that CNN
feature extraction improves classification accuracy by generating more representative image
features than traditional methods. By experimenting on tire image datasets, this research
assesses the accuracy and effectiveness of each model combination and compares the
performance of Logistic Regression versus SVM in tire track classification.

This research aims to develop an automatic classification system to assist the automotive
industry in identifying and analyzing tire tread patterns quickly and efficiently. Given the rising
demand for predictive vehicle maintenance technologies, the study contributes to Al-based tire
analysis methods. It evaluates not only classification accuracy but also processing speed and
efficiency on large datasets, offering a reference for advanced, automated tire inspection
systems in the automotive sector.

Related research shows that Convolutional Neural Networks (CNNs) are often applied
for feature extraction from tire images, followed by classification using SVM, Logistic
Regression, or Random Forest methods. Krizhevsky et al. (2017) highlighted CNNs’
superiority in image processing due to automatic high-level feature extraction without manual
feature engineering. CNN applications in automotive contexts include tire wear detection,
brand identification, and groove classification. VGG-16, VGG-19, and Inception V3 are favored
CNN models due to their deep architectures capturing complex image patterns.
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Studies comparing CNNs to traditional machine learning classifiers for tire pattern
recognition (He et al. 2019; Wang et al. 2021) reaffirm that combining CNN feature extraction
with SVM typically improves accuracy, especially with complex, high-dimensional features.
Conversely, Logistic Regression remains competitive when features are simpler, offering faster
computation and easier interpretation. Smith et al. (2020) noted that while GG models yield
high accuracy, Inception V3 provides better computational speed without significant accuracy
loss, hence this study’s focus on these models.

Support Vector Machine (Cortes & Vapnik, 1995) is praised for its ability to handle high-
dimensional data and optimize decision boundaries, enhancing image classification accuracy
across domains including medical images and handwriting recognition. In tire groove
classification, SVM improves accuracy compared to purely neural network-based methods.

Logistic Regression also plays a role in probabilistic pattern analysis. Hosmer &
Lemeshow (2000) describe its use in multi-category classification based on predictor variables.
While performing slightly worse than SVM or CNN classifiers in some tire studies (Li et al.
2018), it remains valuable for rapid processing and straightforward results interpretation.

CNN-based techniques extend to related applications such as road pattern recognition
and tire characteristic classification. Zhao et al. (2019) utilized CNN combined with
morphology-based segmentation to differentiate tire groove textures and shapes, which
traditional manual methods struggle to capture.

Dataset quality and image preprocessing critically influence classification outcomes.
Zhang et al. (2020) reported that augmentation techniques like rotation, flipping, and contrast
adjustment can boost classification accuracy by up to 10%, important given the variable
orientations and lighting in tire images. This study adopts normalization, data augmentation,
and contrast enhancement to improve groove pattern classification performance.

Key findings of this study reveal that the combination of /nception V3 and SVM achieves
the highest accuracy (93.2%) and AUC (0.987), underscoring SVM’s advantages with complex
data. Meanwhile, Logistic Regression combined with VGG-16 remains favorable for
computational efficiency. The study’s dataset and preprocessing methods tailor to real-world
scenarios, delivering practical Al solutions for automated tire inspection.

Overall, combining CNN feature extraction with machine learning classifiers like SVM
and Logistic Regression shows strong potential in tire groove classification. Prior research
confirms CNNs extract superior features, while SVM and Logistic Regression yield more
optimal classification than purely neural network classifiers. This study integrates these
strengths for vehicle tire groove pattern classification, leveraging optimally processed datasets
to enhance accuracy and efficiency. In doing so, it contributes academically to Al in automotive
research and offers industry-ready, innovative Al-based tire analysis methods, with model
selection and performance analyses serving as valuable guides for developing advanced tire
tread pattern classification systems.

RESEARCH METHODS
A. Equipment used
To analyze the objects in this study using the following tools:
1. Internet
2. laptop with specifications
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Figure 1. Illustration of the equipment used
Source: Research document

B. Object Capture
Images are selected and taken through the internet browsing process with the help of
google images. The image capture process is done by screencapturing the object to be
classified. The objects taken are images of tire grooves which are grouped into 3 (three)
parts, namely: symmetrical grooves, asymmetrical grooves, and directional grooves.
C. Tire Groove Type/Pattern
There are 3 (three) types of tire groove types that are classified in this article, which
can be seen in the following figure:

Ne Ctgess Dexripees
Syveemcal groeee toes me coe pe of tod goore S 1 ot
00 (8 padsemger oatt Do puResetro groetes ey geadaly have
Tt Mt Gresbapensnn. S 00 The s 100 o 1 T Oty
Aot e, despand w1 Afwent el 52es betveer B

e oad 2t the tzar Tead Thoe tipe o€ 0¢ b the adeamtage of
by mied da Al Tipes of weather, be 1l Careg By or sexs foud
wariaws No wooder thit ype of trw & ol reluTed 13 & 35 AL
Sewns ver

&

»
»

ymmeotrical

This sype of i 3 3 proove oo B tead tha = snéecseml
trwiag Dl 48 Sox b heve e jese grocee devition, e
wremds the ot = Sack Tm wrdh thin Tpw of gome gresaly
Aove 3 beead shage 13ke the detter N

Figure 2. Tire groove/pattern type
Source: Research document

D. Research Flow
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Figure 3. Research Flowchart
Source: Research document
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1. Data Collection (Symmetrical, Asymmetrical, Unidirectional Tire Pattern)

The first step was to collect data on tire pattern images from three main categories:
symmetrical, asymmetrical, and unidirectional. Symmetrical patterns have identical designs
on both sides of the center, asymmetrical patterns differ between the inner and outer sides,
while unidirectional patterns are designed to move in one specific direction. The data will
be collected through capturing images using screen capture and categorized based on the
type of pattern. This step includes data cleaning to ensure accuracy, such as removing
duplicate or irrelevant images. The resulting dataset should be representative and of high
quality to support subsequent analysis.

2. Image Embedding (VGG-16, VGG-19, Inception V3)

At this stage, the important features of the tire pattern image are extracted using deep
learning models and in this artiker using 3 types namely VGG-16, VGG-19, and Inception
V3. These models help convert the image into a numerical representation (embedding) that
reflects the visual characteristics of the image. The process starts with preprocessing, such
as resizing the image to fit the model input, pixel normalization, and data augmentation if
needed. The image is then processed by the model to produce an embedding at a specific
layer, usually the final layer before the output. This representation becomes the basis for the
next stage of classification.

3. Classification (SVM, Logistic Regression)

The next step after the images have been extracted is to classify the tire patterns using
machine learning algorithms, namely Support Vector Machine (SVM) and Logistic
Regression. SVM serves to separate the data with maximum margin for proper
classification, while Logistic Regression is used to model the relationship between features
and target categories. The data is divided into training and test data to train the model and
measure its performance. The model categorizes tire patterns into classes such as optimal,
moderate, or poor. The classification results are an initial indicator to assess the
effectiveness of the model on the dataset.

4. Result Analysis

Evaluating the classification results to assess the performance of the model is an
activity at this stage. The analysis is done by comparing the model predictions with the
actual labels and calculating evaluation metrics such as accuracy, precision, recall, and F1-
score. The evaluation results are used to identify the strengths and weaknesses of the model,
such as bias towards certain classes or difficulty in recognizing certain patterns. If the model
performance is not optimal, improvements are made, for example through hyperparameter
tuning or data addition. This stage ensures that the developed system can meet the specific
needs of the application.

5. End

The last step is to summarize the results of the analysis and provide recommendations
for the next steps. The conclusion contains an assessment of the accuracy of the model, the
most effective algorithm implementation, and the necessary improvement steps. In addition,
these results can be applied in real product development, such as the design of more optimal
tire patterns for specific road conditions. By taking a systematic approach, this stage ensures
that the research produces solutions that are relevant and practically applicable.
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RESULT AND DISCUSSION
a. Classification Model

The classification process is carried out using orange soft software, with import data as
many as 118 images with 3 types of tire grooves which can be seen in Figure 4.
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Pigure 4. Classification model with logistic regression and support vector machine
Source: The results of the Orange soft analysis

The Image embedding process is carried out by classifying the 118 that have been
imported into the orange.Embedder application is used by using 3 (three) modes namely:
Inception V3, VGG-16 and VGG-19. Furthermore, to see the distribution of data, you can see

Figure 5, namely this diagram can be used for cluster or distribution analysis in a dataset with
three different classifications.

Figure 5. Result of Feature Extraction
Source: The results of the Orange soft analysis
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b. Logistic Regression Model
The learning models used are Logistic Regression and SVM. Logistic Regression uses
a sigmoid function to convert the model output into a probability value between 0 and 1.
The sigmoid function has the formula o(z)=11+e—z\sigma(z) = \frac{l}{l + e"{-
z}}o(z)=1+e—z1, where zzz is a linear combination of input features and weights
(z=wTx+bz = w"T x + bz=wTx+b).

W : Weight Vector
X : Input Feature Vector
b : Bias

The probabilities generated from the sigmoid can be converted into class predictions by
setting a certain threshold, usually 0.5. In the context of this dataset, Logistic Regression
performed well with metrics such as AUC of 0.978 and recall of 0.915, indicating that the
model has an excellent ability to identify positive classes.

Support Vector Machine (SVM) is a machine learning algorithm used for classification
and regression tasks by finding the best hyperplane that separates the classes in a dataset. SVM
maximizes the margin between the separating hyperplane and the closest data from each class,
called support vectors. The algorithm can work linearly or non-linearly, depending on the use
of'kernels such as linear, polynomial, or radial basis function (RBF). RBF kernels, for example,
allow SVMs to map data to a higher dimensional space to handle data that cannot be linearly
separated. In this evaluation, SVM showed superior performance with an AUC of 0.981,
classification accuracy of 93.2%, and recall of 93.2%, demonstrating its excellent ability to
separate classes and provide accurate predictions even under complex data conditions. The
data can be seen in Figure 6, Figure 7 and Figure 8.

Figure 6. Result Test and score type Logistic Regression and SVM Inception V3
Source: Hasil Inception V3 (AUC 0.987)
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Figure 7. Result Test and score type Logistic Regression and SVM VGG-16
Result: Result of VGG-16 (AUC 0.976)
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Figure 8. Result Test and score type Logistic Regression and SVM VGG-19
Source: VGG-19 Result (AUC 0.962)

Based on the three uploaded model evaluation figures, there are performance variations
between Logistic Regression (LR) and Support Vector Machine (SVM) in each experimental
configuration. In the first figure, Logistic Regression shows competitive AUC (0.978), CA
(0.915), and Recall (0.915) values, but SVM excels in almost all metrics with AUC 0.981, CA
0.932, and Recall 0.932. This shows that SVM has an advantage in separating data and
handling more complex cases than Logistic Regression on this dataset.

In the second figure, Logistic Regression continues to perform well with an AUC of
0.976 and other metric values that are consistent at 0.907. However, SVM experienced a
decline in performance with an AUC of 0.960 and other metrics, such as CA and Recall,
hovering around 0.881. Meanwhile, in the third figure, there is a variation in performance
depending on the modeling order. Logistic Regression recorded an AUC of 0.987 and
classification metrics above 0.9, while SVM only achieved an AUC of 0.962 and other metrics
in the range of 0.847. This comparison shows that Logistic Regression tends to be more stable
across experiments, while SVM is more dependent on the data configuration or kernel
parameters used.

Based on the evaluation results shown, there are significant performance differences
between Logistic Regression (LR) and Support Vector Machine (SVM) in combination with
different feature extraction methods (Inception V3, VGG-16, and VGG-19). Logistic
Regression showed consistent performance when combined with Inception V3 (AUC: 0.978,
CA: 0.915) and VGG-16 (AUC: 0.976, CA: 0.907), with similar F1-score, Precision, and
Recall values (0.915 for Inception V3 and 0.907 for VGG-16). This combination shows that
Logistic Regression is able to perform well on features that are deeply extracted by models
such as Inception V3 and VGG-16. However, the performance of Logistic Regression
decreased when using VGG-19, as seen from the AUC value of 0.962 and CA of 0.847.
Precision, Recall, and F1-score values in the combination of Logistic Regression and VGG-19
are also lower than the combination with the other two models. This shows that Logistic
Regression is more sensitive to the quality of the extracted features, with the best performance
when using Inception V3. The more complex features generated by VGG-19 may not be fully
utilized by Logistic Regression, which is better suited for data with a simpler structure.

Meanwhile, SVM overall showed higher performance than Logistic Regression on some
feature combinations. When using Inception V3, SVM achieved the highest AUC (0.981) with
a CA value 0f0.932 and F1-score of 0.933, confirming that SVM was able to effectively utilize
the features extracted by Inception V3 to improve classification accuracy. This combination
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also provided a higher MCC value (0.899), demonstrating the SVM's ability to handle data
imbalance. In combination with VGG-19, SVM also showed competitive performance (AUC:
0.987, CA: 0.907), which was similar to Logistic Regression on the same features. However,
the performance of SVM decreased slightly when using VGG-16, as seen from AUC 0.960
and CA 0.881. Even so, the Precision and Recall values remained higher than Logistic
Regression on the same combination, indicating that SVM is more flexible in utilizing features
from various extraction methods.
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Figure 9. Comparison of logistic Regression result and SVM on Three Feature

Extraction
Model Feature Area Classification F1  Precision Recall MCC
Extraction Under Accuracy (CA)
ROC
Curve
(AUC)
Logistic Inception 0.978 0.915 0.915 00915 0915 0.873
Regression V3
VGG-16 0.976 0.907 0.907 0.907 0.907 0.860
VGG-19 0.962 0.847 0.847 0.847 0.847 0.771
Support Inception 0.981 0.932 0.933 0.934 0.934 0.892
Vector V3
Machine VGG-16 0.960 0.881 0.882 0.882 0.881 0.826
(SVM) VGG-19 0.987 0.907 0911 0911 0.907 0.861

Source: Comparative synthesis of researchers based on the results of the entire experiment

These results show that the choice of feature extraction method has a significant impact
on the performance of the classification model. Inception V3 gave the best results for both
algorithms (Logistic Regression and SVM), with SVM excelling in almost all evaluation
metrics. SVM proved to be more robust in utilizing different types of features to produce more
accurate predictions than Logistic Regression. However, Logistic Regression is more stable on
simpler features such as VGG-16. This is especially important for applications that require high
efficiency in computational processes, where simpler models can provide adequate results. In
conclusion, the combination of Inception V3 and SVM is recommended for the tire pattern
classification application in this study, as it provides the best balance between accuracy,
precision, and model stability. This combination also provides better flexibility in dealing with
complex data challenges, such as tire patterns with high texture variations.

CONCLUSION
This research demonstrates that the effectiveness of tire pattern classification models
largely depends on the specific combination of feature extraction techniques and classification
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algorithms employed. Among the methods evaluated, Inception V3 emerged as the most
effective feature extractor, yielding superior results when paired with both Support Vector
Machine (SVM) and Logistic Regression. Overall, SVM outperformed Logistic Regression by
offering greater robustness and higher evaluation metrics, particularly when combined with
Inception V3 and VGG-19. Nevertheless, Logistic Regression showed competitive and stable
performance on simpler features such as those extracted by VGG-16, making it a viable option
when computational efficiency is a priority. The study recommends using the Inception V3 and
SVM combination for applications demanding high accuracy, with Logistic Regression as an
alternative for resource-constrained environments. Future research could explore integrating
emerging feature extraction architectures and investigate adaptive hybrid models that
dynamically select the optimal classifier based on real-time data complexity and computational
resources, further enhancing classification accuracy and efficiency across diverse road
conditions.
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