

SA

Eduvest - Journal of Universal Studies Volume 5 Number 1, January, 2025 p- ISSN 2775-3735- e-ISSN 2775-3727

THE IN SILICO STUDY: CURCUMIN POTENTIAL AS A TOPOISOMERASE ENZYME INHIBITOR IN THE REPLICATION PROCESS OF PLASMODIUM FALCIPARUM THAT CAUSES CEREBRAL MALARIA

Any Fira Safitri¹, Risma²*, Olivia Mahardani Adam³, Danny W. Danandjaja⁴ Fakultas Kedokteran, Universitas Hang Tuah, Indonesia ^{1,2,3,4} Email: anyfirasafitri@gmail.com, risma@hangtuah.ac.id*, olivia.mahardani@hangtuah.ac.id, dannydanandjaja@gmail.com

ABSTRACT

Turmeric (Curcuma longa) contains the active compound curcumin, which has antiprotozoal, antimalarial, anti-inflammatory effects. This study aims to ignite the potential of curcumin, which has the potential as an antiprotozoal through inhibition of Plasmodium Falciparim replication through the topoisomerase enzyme. The method used in this study is the One Shot Experimental Study, with several stages including preparation of active compounds, prediction of active substance binding energy, prediction of compound binding, molecular docking, prediction of ADME (absorption, distribution, metabolism, excretion) and toxicity. The results show that curcumin binds to the same site as Artemisinin, both also interact with the topoisomerase VI protein and provide similar inhibitory effects. ADME predictions show that curcumin has good potential for use as an oral drug, with both LD50s included in class 4. The binding affinity and bioactivity of curcumin are lower than Artemisinin but are still considered to have the potential as a safer antiprotozoal alternative.

KEYWORDSPlasmodium falciparum, Curcuma longa, Topoisomerase enzyme,
turmericThis work is licensed under a Creative Commons Attribution-

ShareAlike 4.0 International

INTRODUCTION

Malaria is caused by protozoan parasites belonging to the genus Plasmodium. Malaria that infects humans can be caused by 5 types of Plasmodium, namely P. Falciparum, P. Malariae, P. Vivax, P. Ovale and P Knowlesi (Habibi et al., 2022). Cerebral malaria (MS) is the most severe and fatal neurological complication leading to death (Jain et al., 2013).

The World Health Organization (WHO) 2020 shows that 1.7 billion cases of malaria worldwide (Kogan & Kogan, 2020; Monroe et al., 2022). Indonesia is the second highest in Southeast Asia for the highest number of malaria cases (WHO, 2022). The highest cases in the eastern region are 400,253 cases in 2022, about 356,889 cases from Papua Province. About 80% of malaria deaths are caused by children under the age of

Any Fira Safitri, et al. (2025). The In silico Study: Curcumin Potential As A
Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium
Falciparum That Causes Cerebral Malaria. Journal Eduvest. 5(1), 628-638
2775-3727

five, who are the most likely group to contract the disease. (Indonesian Ministry of Health, 2022).

Malaria is transmitted to humans through the bite of a female Anopheles mosquito infected with Plasmodium parasites (Markwalter et al., 2024a, 2024b). In addition, other forms of malaria transmission can include transmission from a pregnant woman infected with malaria to her fetus, and transmission through blood transfusions contaminated with plasmodium parasites (CDC, 2023).

The first-line treatment option is Artemisinin, which provides a rapid and sustained parasitologic cure in patients with Plasmodium falciparum malaria and has been shown to reduce transmission in areas of low and moderate endemicity (van Der Pluijm et al., 2020). Potentially severe side effects include QTc interval prolongation, cardiac arrhythmias, liver damage. However, Therapeutic Efficacy Studies (TES) show an increase in drug resistance in malaria, where currently available antimalarial drugs such as artemisinin and chloroquine (NLM, 2017). Therefore, alternative treatments are needed, one of which is turmeric extract or Curcuma longa (Belay et al., 2024; Jawale, n.d.).

Curcumin, a natural polyphenol derived from rhizomatous perennial plants or turmeric, is proven as an antimalarial, anti-inflammatory, antioxidant, anticancer, and cardiovascular enhancement agent (Kumpitak et al., 2024). Curcumin contained in turmeric can prevent the activity of the topoisomerase enzyme, which is required for DNA replication. This enzyme may represent a potential selective target to be explored for drug development against malaria (Jamil et al., 2023).

In silico can be used in visualizing an experiment / trial that will be done with the help of a computer (Jabeen et al., 2024). This in silico test can be used to determine and predict the occurrence of an interaction between a compound and the desired target molecule and one of them is a receptor (Takken et al., 2024). The interaction of a compound with this receptor can be visualized using computational methods and can be used to determine the pharmacophore of the compound used (Setiawan et al., 2016).

Based on this description, researchers are interested in conducting research on In Silico Studies: Potential of Curcumin as a Topoisomerase Enzyme Inhibitor in the Replication process of Plasmodium Falciparum that causes Cerebral Malaria.

RESEARCH METHOD

This study uses a One Shot Experimental Study design, which aims to test the potential of active compounds in Turmeric (Curcuma longa) as topoisomerase enzyme inhibitors in Plasmodium falciparum. The research method used was In Silico study with molecular docking using Molegro virtual Docker 5.0 program. After that, the prediction of bio-activity as antiprotozoal on Way Two Drug Pass Online webserver (http://www.way2drug.com/passonline/), ADME prediction of compounds using SWISS ADME webserver (http://tox.charite.de/protox_II/).

RESULT AND DISCUSSION

Predictive Analysis of Interaction of Curcumin and Artemisin Compounds with Topoisomerase Proteins

Table 1. Predicted Active Substance Bond Energy				
No.	Compound	Bond energy (Kj/mol)		
1.	Artemisinin	-185		
2.	Curcumin	-363,6		

The binding affinity value is used to predict the strength of an interaction between ligand and protein, the strength of this interaction can be known with the Molegro virtual Docker 5.0 program with a maximum Molecular surface van der Waals parameter of 5. The interaction between ligand and receptor is said to be stronger if the value obtained is increasingly negative. Curcumin has a binding affinity value of -363.6 Kj/mol, while Artemisinin -185, indicating that Curcumin binds more strongly to the receptor and its inhibitory effect is greater than Artemisinin.

Table 2. Binding Prediction Results of Curcumin and Artemisinin Compounds with Topoisomerase VI Protein

		Topoisonici		CIII	
Ligand	Bond	Interaction	Distance	Bond Type	Bond Type
	Energy		(A)		
Artemisin	-185	A:THR111:OG1	2.72357	Hydrogen	Conventional
		- :10:O3		Bond	Hydrogen Bond
		A:THR111:OG1	2.76482	Hydrogen	Conventional
		- :10:O5		Bond	Hydrogen Bond
		A:THR111:CA -	3.55573	Hydrogen	Carbon
		:10:02		Bond	Hydrogen Bond
		A:LYS113:CE -	3.60269	Hydrogen	Carbon
		:10:O4		Bond	Hydrogen Bond
		:10:H4 -	2.87654	Hydrogen	Carbon
		A:LEU110:O		Bond	Hydrogen Bond
		A: LYS104 - :10	5.13343	Hydrophobic	Alkyl
		A:LEU126 - :10	4.09234	Hydrophobic	Alkyl
		:10:C12 -	3.67019	Hydrophobic	Alkyl
		A:LEU126			
		:10:C12 -	4.66863	Hydrophobic	Alkyl
		A:LYS127			
		:10:C15 -	4.41121	Hydrophobic	Alkyl
		A:LYS104			
		A:PHE105 - :10	5.27589	Hydrophobic	Pi-Alkyl
		A:PHE105 -	4.71271	Hydrophobic	Pi-Alkyl
		:10:C12			
		A:SER112:OG -	1.98767	Unfavorable	Unfavorable
		:10:C15			Bump
		A:SER112:OG -	1.2968	Unfavorable	Unfavorable
		:10:H22			Bump

The In silico Study: Curcumin Potential As A Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium Falciparum That Causes Cerebral Malaria

Curcumin	-363,6	A:ASP101:N -	3.39317	Hydrogen	Conventional
		:10:O3		Bond	Hydrogen Bond
		A: LYS104 :NZ -	3.06265	Hydrogen	Conventional
		:10:O1		Bond	Hydrogen Bond
		:10:H13 -	1.92469	Hydrogen	Conventional
		A:LYS98:O		Bond	Hydrogen Bond
		:10:H14 -	2.13295	Hydrogen	Conventional
		A:ASP49:OD2		Bond	Hydrogen Bond
		A: LYS113 :CE -	2.68726	Hydrogen	Conventional
		:10:06		Bond	Hydrogen Bond
		:10:H16 -	3.00535	Hydrogen	Conventional
		A:LYS98:O		Bond	Hydrogen Bond
		:10:H20 -	2.87974	Hydrogen	Conventional
		A:GLY96:O		Bond	Hydrogen Bond
		A:ILE99:CG1 -	3.88111	Hydrophobic	Pi-Sigma
		:10			
		:10:C20 -	5.39003	Hydrophobic	Alkyl
		A:LYS98			
		:10:C21 -	4.94046	Hydrophobic	Alkyl
		A:LYS98			
		:10:C21 -	4.84726	Hydrophobic	Alkyl
		A:ILE99			
		:10 - A: LYS104	3.92722	Hydrophobic	Pi-Alkyl
		:10 - A:ALA44	5.30863	Hydrophobic	Pi-Alkyl
		:10 - A:LYS95	4.39263	Hydrophobic	Pi-Alkyl

Figure 1. Visualization of the interaction of curcumin and artemisinin compounds with topoisomerase VI protein

Docking results with Molegro virtual docking version 5.0 were combined with proteins using PyMol software version 2.3 docking visualization to display 3D and 2D views and their interactions with Discovery Studio program version 21.1.1. Analysis to evaluate the interaction of curcumin and artemisinin compounds bind to topoisomerase VI protein. Shows the results that both form various types of bonds, including hydrogen

bonds, hydrophobic bonds, Conventional Hydrogen Bond, Carbon Hydrogen Bond, pisigma, alkyl, pi-alkyl, Unfavorable, Unfavorable Bump.

The types of bonds formed between curcumin and topoisomerase proteins are 7 hydrogen bonds and 7 hydrophobic interactions at residues ASP101, LYS104, LYS98, ASP49, LYS113, LYS98, GLY96, ILE99, ALA44, and LYS95. Interestingly, the topoisomerase residues LYS113 and LYS104, identified in curcumin were also present in artemisinin, indicating the same inhibitory mechanism as artemisinin against topoisomerase VI protein. This suggests that Artemisinin and curcumin can act as inhibitors of protein topoisomerase VI in its replication process.

ADME Analysis

Table 3. ADME Prediction Results of Artemisinin and Curcumin						
P	Pharmacokinetic parameters			isinin	Curcumin	
Category	Name	Unit	Value	Confidenc	Value	Confidence
				e		
Absorpti	Caco-2 (logPaap)	logPaap	-4,59	-	-4,5	-
on	Human Oral	Category	Bioavailable	0,866	Bioavailable	0,534
	Bioavailability	(Bioavailable				
	20%	/ Non-				
		Bioavailable)				
	Human Intestinal	Category	Absorbed	0,967	Absorbed	0,965
	Absorption	(Absorbed/N				
		on-Absorbed)	1.55			
	Madin-Darby	cm/s	-4,66	-	-4,74	-
	Canine Kidney		NT	0.450	D: 111	0.702
	Human Oral	Category	Non-	0,459	Bioavailable	0,703
	50%	(Dioavailable	Dioavaliable			
	3070	/ NOII- Bioavailable)				
	P-Glycoprotein	Category	Non-	0.122	Inhibitors	0.94
	Inhibitor	(Inhibitor/No	Inhibitors	0,122	minonors	0,74
	minoritor	n-Inhibitor)	minortors			
	P-Glycoprotein	Category	Non-	0,086	Non-	0,15
	Substrate	(Substrate/No	Substrate		Substrate	- 7 -
		n-Substrate)				
	Skin Permeability	log Kp	-2,18	_	-2,3	-
Distributi	Blood-Brain	log BB	-3,07	-	-2,61	-
on	Barrier (Central	-				
	Nervous System)					
	Blood-Brain	Category	Penetrable	0,825	Non-	0,049
	Barrier	(Penetrating/			Penetrable	
		Non-				
		Penetrating)				
	Fraction	free	0,51	-	1,1	-
	Unbound	proportion				
	(Human)		11.50		2 < 0.0	
	Plasma Protein	therapeutic	11,68	-	36,08	-
	Binding	ındex				

The In silico Study: Curcumin Potential As A Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium Falciparum That Causes Cerebral Malaria

	Steady State	log VDss	1,15	_	0,79	_
	Volume of	C				
	Distribution					
Metaboli	Breast Cancer	Category	Non-	0,149	Inhibitors	0,52
sm	Resistance	(Inhibitor/No	Inhibitors			
	Protein	n-Inhibitor)				
	CYP 1A2	Category	Inhibitors	0,927	Inhibitors	0,665
	Inhibitor	(Inhibitor/No				
		n-Inhibitor)				
	СҮР	Category	Non-	0,327	Substrate	0,618
	1A2_substrate	(Substrate/No	Substrate			
		n-Substrate)				
	CYP 2C19	Category	Non-	0,001	Inhibitors	0,846
	Inhibitor	(Inhibitor/No	Inhibitors			
		n-Inhibitor)				
	CYP	cyp2c19_sub	Non-	0,348	Non-	0,407
	2C19_substrate	strate	Substrate		Substrate	_
	CYP 2C9	Category	Non-	0,005	Inhibitors	0,912
	Inhibitor	(Inhibitor/No	Inhibitors			
		n-Inhibitor)				
	CYP 2C9	Category	Non-	0,004	Substrate	0,98
	Substrate	(Substrate/No	Substrate			
		n-Substrate)				
	CYP 2D6	Category	Non-	0	Inhibitors	0,974
	Inhibitor	(Inhibitor/No	Inhibitors			
		n-Inhibitor)	N.T.	0.4		0.045
	CYP 2D6	Category	Non-	0,4	Non-	0,347
	Substrate	(Substrate/No	Substrate		Substrate	
	CVD 2 A A	n-Substrate)	NT	0.042	NT	0.400
	CYP 3A4	Category	Non-	0,043	Non-	0,499
	Innibitor	(Infilditor/INO	Infibitors		innibitors	
		n-Innibitor)	Substrate	0.920	Non	0.15
	CIP 3A4 Substrate	Calegory (Substrate/No	Substrate	0,839	INOII- Substrata	0,15
	Substrate	(Substrate/NO			Substrate	
		Cotogory	Non	0.041	Non	0.324
	UAIFIDI	(Inhibitor/No	Indii-	0,041	Indii- Inhibitora	0,324
		(IIIII0It01/NO	minutors		minutors	
	ΟΔΤΡ1Β3	Category	Non-	0.064	Non-	0.114
	0/11/105	(Inhibitor/No	Inhibitors	0,004	Inhibitors	0,114
		n-Inhibitor)	minortors		minortors	
Excretion	Clearance	Log	14.87	-	6.14	_
		=-0	,			
	Clearance	(ml/min/kg)				
	Organic Cation	(ml/min/kg) Category	Non-	0,215	Non-	0,373
	Organic Cation Transporter 2	(ml/min/kg) Category (Inhibitor/No	Non- Inhibitors	0,215	Non- Inhibitors	0,373
	Organic Cation Transporter 2	(ml/min/kg) Category (Inhibitor/No n-Inhibitor)	Non- Inhibitors	0,215	Non- Inhibitors	0,373
	Organic Cation Transporter 2 Half-Life of Drug	(ml/min/kg) Category (Inhibitor/No n-Inhibitor) Category	Non- Inhibitors Half-Life <	0,215	Non- Inhibitors Half-Life <	0,373

3hs/ Half-life
< 3hs)

Absorption, Distribution, Metabolism, and Excretion (ADME) predictions that explain the flow of the compound's journey in its biological activity, starting from absorption until it reaches the target organ and produces a therapeutic effect. The human gut serves as the main organ where absorption of drugs administered via the oral route takes place. A compound is considered to have a good absorption rate if the absorption value is more than 80%, while it is considered to have poor absorption if the absorption value is less than 30%. Based on the research, the curcumin compound has a good small intestinal absorption value with an absorption percentage of 96.5%, almost the same as artemisinin with an absorption percentage of 96.7%.

A compound is considered to have a low volume of distribution if the distribution value is less than -0.15, and it is considered high if it is more than 0.45. In this case, the distribution value of curcumin (0.79) is lower than that of artemisinin (1.15). Therefore, it can be concluded that both can distribute themselves evenly in the body and are quite maximal in reaching concentrations similar to those in blood plasma.

The two major subtypes of cytochrome P450 enzymes are CYP2D6 and CYP3A4. The metabolic properties of curcumin and artemisinin are quite good as both compounds are able to metabolize CYP3A4 substrates. Thus, it can be concluded that both compounds are likely to be metabolized by P450 enzymes.

The excretion process of a compound can be anticipated by measuring the Total Clearance value and whether the compound is a substrate of the Renal Organic Cation Transporter 2 (OCT2). The excretion value of the clearance of curcumin is lower than that of artemisinin. From both values, it can be expected that curcumin compounds will be excreted more slowly than artemisinin.

Table 4. Lipinski's Rules Of Five Analysis					
Description	Artemisin	Curcumin			
Molecular Weight (g/mol)	262.30	368.38			
Hydrogen Bond Acceptors	4	6			
Hydrogen Bond Donors	1	2			
Molar Refraction	69.32	102.80			
Lipophilicity	<5	<5			
Number of Atoms	19	27			
Water Solubility	Soluble	Moderately soluble			
Gi Absorption	High	High			
BBB Permeant	Yes	No.			
Bioavaibility	0.55	0.55			

Lipinski's Rules Of Five Analysis

Lipinski's Rule of five:

- 1. <5 hydrogen bond donors
- **2.** <10 hydrogen bond acceptors
- *3. Mollecular weight* < 500 daltons
- *4.* <5 *lipophilicity*
- 5. Molar refractivity (40-130)

This study shows Artemisinin and Curcumin as oral drugs based on Lipinski's Rule of five, both qualify as candidates for oral drug development.

Toxicity Analysis

Table 5. Toxicity Analysis of Target Compounds on Organs			
Classification	Target	Artemisi	Curcumi
— • •		<u>n</u>	<u>n</u>
Target Organ	Hepatotoxicity	0.61	0.61
	Neurotoxicity	0.76	0.81
	Nephrotoxicity	0.50	0.59
	Respiratory toxicity	0.82	0.77
	Cardiotoxicity	0.78	0.55
Toxicity end points	Carcinogenecity	0.55	0.84
	Immunotoxicity	0.96	0.92
	Mutagenecity	0.77	0.88
	Cytotoxicity	0.84	0.88
	BBB-barrier	0.91	0.58
	ecotoxicity	0.59	0.75
	Clinical toxicity	0.55	0.61
	Nutritional toxicity	0.75	0.74
Tox21-nuclear	Aryl hydrocarbon Receptor (AhR)	0.97	0.54
receptor signaling	Androgen Receptor (AR)	0.78	0.99
pathways	Androgen Receptor Ligand Binding	0.76	0.99
	Domain (AR-LBD)		
	Aromatase	0.71	0.90
	Estrogen Receptor Alpha (ER)	0.85	0.51
	Estrogen Receptor Ligand Binding	0.93	0.83
	Domain (ER-LBD)		
	Peroxisome Proliferator Activated	0.94	1.0
	Receptor Gamma (PPAR-Gamma)		
Tox21-Stress	Nuclear factor (erythroid-derived 2)-	0.93	1.0
response pathways	like 2/antioxidant responsive		
	element (nrf2/ARE)		
	Heat shock factor response element	0.93	1.0
	(HSE)		
	Mitochondrial Membrane Potential	0.70	1.0
	(MMP)		
	Phosphoprotein (Tumor Suppressor)	0.82	1.0
	p53		
	ATPase family AAA domain-	0.81	0.94
	containing protein 5 (ATAD5)		
Molecular Initiating	Thyroid hormone receptor alpha	0.73	0.90
Events	(THRa)		
	Thyroid hormone receptor beta	0.93	0.78
	(THRβ)		
	Transtyretrin (TTR)	0.55	0.97

Ryanodine receptor (RYR)	0.89	0.98
GABA receptor (GABAR)	0.53	0.96
Glutamate N-methyl-D-aspartate	0.99	0.92
receptor (NMDAR)		
alpha-amino-3-hydroxy-5- methyl-	1.0	0.97
4-isoxazolepropionate receptor		
(AMPAR)		
Kainate receptor (KAR)	1.0	0.99
Achetylcholinesterase (AChE)	0.52	0.61
Constitutive androstane receptor	1.0	0.98
(CAR)		
Pregnane X receptor (PXR)	0.74	0.92
NADH-quinone oxidoreductase	0.67	0.97
(NADHOX)		
Voltage gated sodium channel	0.94	0.95
(VGSC)		
Na+/I- symporter (NIS)	0.82	0.98
Cytochrome CYP1A2	0.90	0.78
Cytochrome CYP2C19	0.94	0.94
Cytochrome CYP2C9	0.74	0.89
Cytochrome CYP2D6	0.89	0.81
Cytochrome CYP3A4	0.75	0.63
Cytochrome CYP2E1	0.99	1.0
	Ryanodine receptor (RYR)GABA receptor (GABAR)Glutamate N-methyl-D-aspartate receptor (NMDAR)alpha-amino-3-hydroxy-5- methyl- 4-isoxazolepropionate receptor (AMPAR)Kainate receptor (KAR)Achetylcholinesterase (AChE)Constitutive androstane receptor (CAR)Pregnane X receptor (PXR)NADH-quinone oxidoreductase (NADHOX)Voltage gated sodium channel (VGSC)Na+/I- symporter (NIS)Cytochrome CYP2C19Cytochrome CYP2D6 Cytochrome CYP3A4 Cytochrome CYP2E1	Ryanodine receptor (RYR)0.89GABA receptor (GABAR)0.53Glutamate N-methyl-D-aspartate0.99receptor (NMDAR)1.0alpha-amino-3-hydroxy-5- methyl-1.04-isoxazolepropionate receptor(AMPAR)Kainate receptor (KAR)1.0Achetylcholinesterase (AChE)0.52Constitutive androstane receptor1.0(CAR)9Pregnane X receptor (PXR)0.74NADH-quinone oxidoreductase0.67(NADHOX)0.94Voltage gated sodium channel0.94(VGSC)0.90Cytochrome CYP1A20.90Cytochrome CYP2C90.74Cytochrome CYP2D60.89Cytochrome CYP2E10.99

The results showed that artemisinin has respiratory toxicity, cardiotoxicity to target organs while curcumin is considered safer in its toxic effects on target organs. On toxicity end points, artemisinin showed immune, BBB, and nutritional toxicity. Tox21-nuclear receptor signaling pathways curcumin is more dominant toxic than Artemisinin.

T 11 C T 1 1			C 1
Table 6 Toxicity	^v Prediction Resul	lts of Targeted	Compounds

Parameters	Artemisinin	Curcumin
LD50	900 mg/kg	2000mg/kg
Toxicity Class	4	4

In this study, Artemisinin and curcumin have LD50 values of 900 mg/kg and 2000 mg/kg, respectively, belonging to toxicity class 4, which indicates the potential danger when ingested in large quantities with different doses.

Bioactivity Analysis as Antiprotozo	al	
Table 7. Bioactivity of Target Compounds		
Bioactivity	Artemisin	Curcumin
Antiprotozoal	0.992 Pa	0.232 Pa
Antiprotozoal (Plasmodium)	0.954 Pa	0.160 Pa
PASS prediction results are interp	reted and used flexibly.	(1) If $p_{a>0}$ 7 the chance of

PASS prediction results are interpreted and used flexibly: (1) If pa>0.7, the chance of finding activity experimentally is high; (2) If 0.5<pa<0.7, the chance of finding activity experimentally is smaller, but the compound may not be so similar to known

The In silico Study: Curcumin Potential As A Topoisomerase Enzyme Inhibitor in The Replication Process of Plasmodium Falciparum That Causes Cerebral Malaria

Bioactivity Analysis as Antiprotozoal

pharmaceutical agents; (3) If pa<0.5, the chance of finding activity experimentally is smaller, but the chance of finding new compounds structurally is high. (Goel *et al.*, 2011)

In this study, the authors wanted to determine the biological activity of curcumin compounds specifically as antimalarial and compare with known pharmacological agents (contro), namely Artemisin. From the results obtained, artemisin has antiprotozoal activity of 0.954Pa, while curcumin has activity as an antiprotozoal of 0.160 Pa. The analysis of this study shows that curcumin has lower antiprotozoal activity than Artemisin.

CONCLUSION

The conclusion of this study shows that curcumin, the active compound in turmeric or *Curcuma longa* has potential as an antiprotozoal against the mechanism of inhibition on the topoisomerase enzyme *Plasmodium falciparum*. Although the antiprotozoal bioactivity of curcumin is lower than Artemisinin, curcumin has the opportunity to find structurally new compounds. Curcumin fulfills Lipinski's rule of five criteria with better ADME to be developed as a safe and efficient drug candidate. The LD50 of curcumin is high compared to Artemisinin as a control, so it is considered safer to use.

REFERENCES

- Belay, A. K., Asale, A., Sole, C. L., Yusuf, A. A., Torto, B., Mutero, C. M., & Tchouassi, D. P. (2024). Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. *Parasites & Vectors*, 17(1), 412.
- Habibi, P., Shi, Y., Fatima Grossi-de-Sa, M., & Khan, I. (2022). Plants as sources of natural and recombinant antimalaria agents. *Molecular Biotechnology*, 64(11), 1177–1197.
- Jabeen, N., Munir, F., Riaz, F., ul ain Arshad, N., & Tahir, S. (2024). *Human malarial parasite plasmodium: An overview*.
- Jamil, M., Salam, A., Benher, B. J., Nasiri, N., & Chaudhary, A. J. (2023). A Case of Acute Liver Failure Due to Artemisinin-Derived Herbal Supplements. *Cureus*, 15(3).
- Jawale, S. S. (n.d.). Plasmodium Vivax-The Malaria Parasite. Avenues in Life Science, 91.
- Kogan, F., & Kogan, F. (2020). Malaria burden. *Remote Sensing for Malaria: Monitoring* and Predicting Malaria from Operational Satellites, 15–41.
- Kumpitak, C., Duangmanee, A., Thongyod, W., Rachaphaew, N., Suansomjit, C., Manopwisedjaroen, K., Aung, P. L., Imad, H. A., Cui, L., & Sattabongkot, J. (2024). Human-to-Anopheles dirus mosquito transmission of the anthropozoonotic malaria parasite, Plasmodium knowlesi. *Parasites & Vectors*, 17(1), 415.
- Markwalter, C. F., Lapp, Z., Abel, L., Kimachas, E., Omollo, E., Freedman, E., Chepkwony, T., Amunga, M., McCormick, T., & Bérubé, S. (2024a). Mosquito and human characteristics influence natural Anopheline biting behavior and Plasmodium falciparum transmission. *MedRxiv*, 2001–2024.
- Markwalter, C. F., Lapp, Z., Abel, L., Kimachas, E., Omollo, E., Freedman, E., Chepkwony, T., Amunga, M., McCormick, T., & Bérubé, S. (2024b). Plasmodium

falciparum infection in humans and mosquitoes influence natural Anopheline biting behavior and transmission. *Nature Communications*, 15(1), 4626.

- Monroe, A., Williams, N. A., Ogoma, S., Karema, C., & Okumu, F. (2022). Reflections on the 2021 World Malaria Report and the future of malaria control. *Malaria Journal*, 21(1), 154.
- Setiawan, T., Ambarsari, L., & Sumaryada, T. I. (2016). Studi In Silico Converse Region Etoposite Binding Domain pada Isozim Human DNA Topoisomerase II. Cakra Kimia Indonesian E-Journal of Applied Chemistry, 4(1).
- Takken, W., Charlwood, D., & Lindsay, S. W. (2024). The behaviour of adult Anopheles gambiae, sub-Saharan Africa's principal malaria vector, and its relevance to malaria control: a review. *Malaria Journal*, 23(1), 161.
- van Der Pluijm, R. W., Tripura, R., Hoglund, R. M., Phyo, A. P., Lek, D., Ul Islam, A., Anvikar, A. R., Satpathi, P., Satpathi, S., & Behera, P. K. (2020). Triple artemisininbased combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. *The Lancet*, 395(10233), 1345–1360.
- CDC. 2023. DPDx Laboratory Identification of Parasites of Public Health Concern[Online].CDC.Available:https://www.cdc.gov/dpdx/malaria/ind¬e¬x¬.ht ml. accessed on May 11, 2024.
- Jain, K., Sood, S., and Gowthamarajan, K. (2013). Modulation of cerebral malaria by curcumin as an adjunctive therapy. *Braz J Infect Dis.* 17(5), 579-91. doi: 10.1016/j.bjid.2013.03.004
- World Health Organization. (2021). World Malaria Report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020
- World Health Organization. World Malaria Report 2020. from WHO Press