Eduvest – Journal of Universal Studies
Volume 2 Number 6, June 2022
1.127 http://eduvest.greenvest.co.id
CONCLUSION
Some notes from the measurement of wall objects using shade and not using shade
in sunny, cloudy and rainy weather: The surface temperature profile of the east-oriented
wall is 1.2% hotter than the west-oriented wall. Meanwhile, in a cloudy atmosphere, the
surface temperature is 64.4% hotter than the ambient air temperature. And the back wall is
only 0.8% hotter than the front wall. And in the rainy atmosphere, the surface temperature
is 78.7% cooler. While the difference between the surface temperature of the front and rear
walls is 13.2% cooler for the front.
While some notes from the measurement of wall objects without using shade in
sunny, cloudy and rainy air: The surface temperature profile of a wall oriented to the west
is 0.3% hotter than the wall oriented to the east. Meanwhile, in a cloudy atmosphere, the
surface temperature is 78.6% hotter than the ambient air temperature. And the back wall is
only 0.3% hotter than the front wall. While the difference between the surface temperature
of the front and rear walls is 0.6% cooler for the back.
REFERENCES
Dwivedi, A., & Jain, M. K. (2014). Fly ash–waste management and overview: A Review.
Recent Research in Science and Technology, 6(1).
Handaya, H., & Sutandi, A. (2019). PERBANDINGAN SLAB DENGAN DROP PANEL
DAN SLAB DENGAN BALOK DITINJAU DARI VOLUME BETON DAN
BIAYA. JMTS: Jurnal Mitra Teknik Sipil, 2(1), 47–56.
Hemalatha, T., & Ramaswamy, A. (2017). A review on fly ash characteristics–Towards
promoting high volume utilization in developing sustainable concrete. Journal of
Cleaner Production, 147, 546–559.
Jurnal, R. T. (2017). Pemanfaatan limbah pembakaran batubara (bottom ash) pada Pltu
Suralaya sebagai media tanam dalam upaya mengurangi pencemaran lingkungan.
Kilat, 6(2), 129–138.
Khanday, S. A., Hussain, M., & Das, A. K. (2021). A Review on Chemical Stabilization of
Peat. Geotechnical and Geological Engineering, 1–15.
Klarens, K., Indranata, M., Antoni, A., & Hardjito, D. (2016). Pemanfaatan Bottom Ash
dan Fly ash Tipe C sebagai Bahan Pengganti dalam pembuatan paving block. Jurnal
Dimensi Pratama Teknik Sipil, 5(2).
Pushpalal, D., Danzandorj, S., Bayarjavkhlan, N., Nishiwaki, T., & Yamamoto, K. (2022).
Compressive strength development and durability properties of high-calcium fly ash
incorporated concrete in extremely cold weather. Construction and Building
Materials, 316, 125801.
Singh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand
on properties of concrete. Resources, Conservation and Recycling, 72, 20–32.
Sivakumar, M. V. K. (2005). Impacts of natural disasters in agriculture, rangeland and
forestry: an overview. Natural Disasters and Extreme Events in Agriculture, 1–22.
Spadoni, M., Voltaggio, M., Sacchi, E., Sanam, R., Pujari, P. R., Padmakar, C.,
Labhasetwar, P. K., & Wate, S. R. (2014). Impact of the disposal and re-use of fly ash
on water quality: the case of the Koradi and Khaperkheda thermal power plants
(Maharashtra, India). Science of the Total Environment, 479, 159–170.
Suseno, H., Prastumi, P., Susanti, L., & Setyowulan, D. (2012). Pengaruh penggunaan
bottom ash sebagai pengganti tanah liat pada campuran bata terhadap kuat tekan bata.
Rekayasa Sipil, 6(3), 272–281.