
Eduvest – Journal of Universal Studies 
Volume 2 Number 2, February 2022 
439    http://eduvest.greenvest.co.id 
Molecular Sciences, 20(3). doi:10.3390/ijms20030656. 
Bak,  MJ  et  al.  (2017).  Inhibitory  effects  of  G-  and  d-tocopherols  on  estrogen-
stimulated breast cancer in vitro and in vivo, Cancer Prevention Research, 
10(3), pp. 188197. doi: 10.1158/1940-6207.CAPR-16-0223. 
Behery,  FA  et  al.  (2013).  Optimization  of  tocotrienols  as  antiproliferative  and 
antimigratory  leads,  European  Journal  of  Medicinal  Chemistry,  59,  pp. 
329341. doi:10.1016/j.ejmech.2012.11.012. 
Bray, F. et al. (2018). Global cancer statistics 2018: GLOBOCAN estimates of 
incidence and mortality worldwide for 36 cancers in 185 countries, CA: A 
Cancer  Journal  for  Clinicians,  68(6),  pp.  394424.  doi: 
10.3322/caac.21492. 
Catalgol, B., Batirel, S. and Ozer, NK (2011). Cellular Protection and Therapeutic 
Potential  of  Tocotrienols,  Current  Pharmaceutical  Design,  17(21),  pp. 
22152220. doi: 10.2174/138161211796957436. 
Deng, S. et al. (2019). Targeting autophagy using natural compounds for cancer 
prevention  and  therapy,  Cancer,  125(8),  pp.  12281246. 
doi:10.1002/cncr.31978. 
Fontana,  F.  et  al.  (2019).  Tocotrienol  induces  apoptosis,  involving 
endoplasmic.pdf,  Cell  Proliferation,  52(e12576),  pp.  115.  doi: 
https://doi.org/10.1111/cpr.12576. 
Hafid,  SRA  and  Radhakrishnan,  AK  (2019).  Palm  tocotrienol-adjuvanted 
dendritic  cells  decrease  expression  of  the  SATB1  gene  in  murine  breast 
cancer cells and tissues, Vaccines, 7(4). doi:10.3390/vaccines7040198. 
Huang, Y. et al. (2017). A naturally occurring mixture of tocotrienols inhibits the 
growth of human prostate tumor, associated with epigenetic modifications 
of cyclin-dependent kinase inhibitors p21 and p27, Journal of Nutritional 
Biochemistry, 40, pp. 155163. doi: 10.1016/j.jnutbio.2016.10.019. 
Kanchi,  MM  et  al.  (2017).  Tocotrienols:  the  unsaturated  sidekick  shifting  new 
paradigms in  vitamin E therapeutics, Drug Discovery Today, 22(12), pp. 
17651781. doi: 10.1016/j.drudis.2017.08.001. 
Kashyap,  D.  et  al.  (2017).  Kaempferol    A  dietary  anticancer  molecule  with 
multiple mechanisms of action: Recent trends and advancements', Journal 
of Functional Foods, 30, pp. 203219. doi: 10.1016/j.jff.2017.01.022. 
Kashyap, D., Sharma, A., Deaf, HS, et al. (2018). Apigenin: A natural bioactive 
flavone-type  molecule  with  promising  therapeutic  function',  Journal  of 
Functional Foods, 48(July), pp. 457471. doi: 10.1016/j.jff.2018.07.037. 
Kashyap,  D.,  Sharma,  A.,  Sak,  K.,  et  al.  (2018).  Fisetin:  A  bioactive 
phytochemical with potential for cancer prevention and pharmacotherapy, 
Life Sciences, 194(February), pp. 7587. doi: 10.1016/j.lfs.2017.12.005. 
Kashyap,  D.,  Deaf,  H.,  et  al.  (2018).  Ursolic  acid  and  quercetin:  Promising 
anticancer  phytochemicals  with  antitimetastatic  and  antiangiogenic 
potential,  Tumor  and  Microenvironment,  1(1),  p.  9.  doi: 
10.4103/tme.tme_3_17. 
Ling,  MT  et  al.  (2012).  Tocotrienols  as  a  potential  anticancer  agent, 
Carcinogenesis, 33(2), pp. 233239. doi:10.1093/carcin/bgr261.