

Eduvest – Journal of Universal Studies Volume 4 Number 05, May, 2024 p- ISSN 2775-3735- e-ISSN 2775-3727

INDUSTRY 5.0 READINESS ASSESSMENT: A MATURITY MODEL FOR INDONESIAN COMPANIES

Mikhael Chandra Arta¹, Nikita Fransiska Mandagi², Intan Kurniawan³, Edi Abdurachman⁴

^{1,2,3,4} Bina Nusantara University, Indonesia Email: mikhael.arta@binus.ac.id, nikita.mandagi@binus.ac.id, intan.kurniawan@binus.ac.id, edia@binus.ac.id

ABSTRACT

As times have evolved, there have been significant advancements in various fields, particularly in technology and industry. Rapid progress in the industrial sector has been marked by the phases of the revolution that started from Industry 1.0 to the latest Industry 5.0 which had been introduced in 2019. However not every company is ready to adapt industry 5.0 into their system and behaviors. There is still lack of matrix development to assess company maturity level in industry 5.0. In this paper, three development matrix is developed so it is easier to assess company maturity level from industry 5.0 perspective. The quantitative data is collected by giving questionnaires to several sectors. From the analysis that has been conducted, it is concluded that automotives industry it the most ready sector to adapt with industry 5.0.

KEYWORDS	Industry 5.0, Maturity Level, Human-centered Design, Resiliency, Sustaina-
	bility, Kruskal-Wallis

O O This work is licensed under a Creative Commons Attribution-BY SA ShareAlike 4.0 International

INTRODUCTION

As times have evolved, there have been significant advancements in various fields, particularly in technology and industry. Rapid progress in the industrial sector has been marked by the phases of the revolution that started from Industry 1.0 to the latest Industry 5.0 which had introduced in 2019. The Industrial Revolution began with the use of linear programming and geometry mathematics in Industry 1.0, which still had many shortcomings, especially in terms of pollution and the time required for implementation (K. Vinitha, 2020). Industry 2.0, which began in the 19th century and was marked by achievements in electricity, combustion engines, and the first communication devices such as telephones and telegraphs, still

	Mikhael Chandra Arta et al. (2024). Industry 5.0 Readiness Assessment:
	A Maturity Model For Indonesian Companies. Journal Eduvest. 4 (5):
How to cite:	4355-4374
E-ISSN:	2775-3727
Published by:	https://greenpublisher.id/

had a disadvantage in terms of high electricity consumption costs (K. Vinitha, 2020). In the 20th century, the Industrial Revolution continued into the era of Industry 3.0, which focused on the development of automation, the semiconductor industry, wireless communication, and renewable energy. However, the complexity and high operational costs were deemed impractical and hindered many organizations (Erik Skov Madsen, 2016). In the 21st century, companies began to enter the era of Industry 4.0, where industries strive to focus on developing intelligent and fully automated systems (Malte Brettel, 2014). The implementation of Industry 4.0 is not without obstacles and challenges as traditional systems will be eliminated and cause serious changes within organizations. This also certainly has weaknesses such as determining appropriate infrastructure and standards, ensuring data security, and educating employees (Rüsch, 2017).

As a refinement of Industry 4.0, Industry 5.0 is expected to create a system in which humans, as the main component, can work in harmony with technologies (Nahavandi, 2019). Industry 5.0, which was initially proposed by Michael Rada (Rada, 2015), not only enhances productivity and efficiency, it also promotes a safer and more gratifying work environment for human workers (Adel, 2022). In addition, the latest technologies such as advanced IT, IoT, AI, and Augmented Reality are actively implemented to enhance the capacity and comfort of workers (Yu, 2017). While Industry 4.0 aims to achieve smart manufacturing and system optimization, Industry 5.0 focuses on sustainability, environmental stewardship, social benefit, and human-centricity (Aditya Akundi, 2022).

This new phase of industry requires highly skilled workers in the development of the latest technology and capable of adapting to industrial changes (Kiss, 2022). As a developing country, Indonesia must prepare itself for the implementation of Industry 5.0. However, with the demands of the changing industrial systems, many challenges are faced by organizations in Indonesia to survive and adopt the new industrial phase, Industry 5.0. Skilled workers and latest technology are needed to handle the process changes in the effort to prepare for this new industrial phase. Many aspects such as education and facilities is not yet sufficient to support the readiness of human resources in Indonesia is certainly a major challenge for the successful implementation of Industry 5.0 (John Burgess, 2020).

The continuous changes brought on by the industrial revolution must now be faced by businesses in Indonesia. Now, the development in Industry 4.0 has impacted businesses through some advantages on improving efficiency, agility, innovation, customer service, and also results in cost reduction. Businesses must, however, anticipate the dynamics of Industry 4.0 so that they are prepared for Industry 5.0. Industry 5.0 not only enables utilization of available big data, but also incorporates robotics technology into the manufacturing process (Aries Kurniawan, 2019).

This study aims to discuss the readiness of business sectors in Indonesia for transitioning from Industry 4.0 to Industry 5.0. Maturity level of each business sector will be analyzed through maturity level calculation and presented via maturity report and radar chart to measure the readiness and to define which aspect that have to be improved to succeed in the Industry 5.0 implementation.

According to the problem background, there are several problem statements which are: a. Which business sector is most ready for the implementation of Industry 5.0? b. What are the skills that each business sector still needs to develop in order to be ready for the implementation of Industry 5.0? From the problem

statements, there are several objectives of this research which are: a. To identify the readiest business sector for the implementation of Industry 5.0. b. To identify the skills that each business sector still needs to develop in order to be ready for the implementation of Industry 5.0.

RESEARCH METHOD

How to cite: E-ISSN: Published by: Mikhael Chandra Arta et al. (2024). Industry 5.0 Readiness Assessment: A Maturity Model For Indonesian Companies. *Journal Eduvest.* 4 (5): 4355-4374 2775-3727 https://greenpublisher.id/

Figure 3.1 Research Method

This research begins with understanding the future about Industry 5.0 and then we try to collect the data about Maturity Model that has been developed before. Therefore, we know what maturity model is like and how to develop it. The last step is to observe the readiness of the organization based on Industry 5.0.

The next step is problem identification. In this step we learn that there is no Industry 5.0 readiness assessment research yet, so there is no data which industry is the readiest among others to face Industry 5.0. In this research we want to solve these two problems.

The next step is to study the literature study about what is industry 4.0, what factors that drives the industry 4.0, and then what is industry 5.0 and the factors that drives it. We also learn what is the difference between them to make sure what the critical drivers that differ it. The last one is to study what Industry 5.0 Maturity Model is like from another research.

The next step is to collect data and analyze it. The data will be collected using interview methods with experts in Industry 5.0 and automation. The questionnaire will be spread to several companies to make sure whether companies already understand what is Industry 5.0 and the factors that drive it.

The last step is to make conclusions and recommendations from this research. After conducting this research, we will know which industry sector has the best readiness to face Industry 5.0 and what should other companies do.

Table 3.1 Research Positioning								
Author, Year	Maturity Model	Method and objectives						
(Sari et al., 2020)	Corporate Sustainability	Develop three stage maturity						
	Maturity Model	model and to assess Indonesian						
		corporation based on the CSMM						
		using data mining						
(Okongwu et al., 2013)	Supply Chain Maturity	Develop maturity model and						
	Model	assess the company using						
		manual Sustainability Report						
		analysis from 50 company						
(Brookes et al., 2014)	Project Management	Develop maturity model and						
	Maturity Model	assess the company using						
		questionnaire from 92 company						
		and interview from 33 company						
(Katuu, 2016)	Enterprise Content	Develop maturity model and						
	Maturity Model	assess the company using FGD						
		technique with 6 company and 1						
		association						
Current Research	Industry 5.0 Maturity	Explore three stage development						
	Model	of maturity model and using						
		questionnaire and interview						
		method to 15 company using						

Research Positioning

Author, Year	Maturity Model	Method and objectives
		maturity level calculation and
		radar chart.

The main difference between another research is the maturity model that is being used. In this research we used Industry 5.0 Maturity Model that has been elaborated into three stage development. For the data collection we combine Katuu and Brookes method by using interview and questionnaire. Then we analyze it by using Maturity Level Calculation and visualization via radar chart and maturity report to determine the readiness of a company based on some maturity model.

Assessment Method & Participant

In this study, the Industry 5.0 implementation readiness measurement will be done by conducting online survey (questionnaire). The survey consists of five sets of question. One set question about the identity and company's characteristics, three sets question about the three pillars of Industry 5.0 which are:

- 1) Human-centered design
- 2) Resiliency
- 3) Sustainability

And the last set of question about the challenges faced by the industries to transform during their effort in implementing Industry 4.0 or prepare for the implementation of Industry 5.0. There will be 18 questions in the survey that need around 10 minutes to be finished.

Based on (Kementrian Perindustrian Republik Indonesia, 2018), there are five priority sectors of the *Making Indonesia* 4.0 program which are:

- 1) Food and beverages
- 2) Textile & Apparel
- 3) Automotive
- 4) Chemicals
- 5) Electronics

So, this study will require respondents from each industry at least a representative to join the online survey especially from the industries that already implement and awarded in INDI 4.0 as Industry 4.0's lighthouse in Indonesia. The data collected from the survey will be calculated with Maturity Model Equation and Kruskal-Wallis Test will be used to make comparisons between each maturity category by means of ranking.

Maturity Model Calculation

The maturity matrix has defined that there are four levels of maturity used in this study. Level 0 described a complete lack support to the concept of Industry 5.0 and level 3 described the readiest attributes required to achieve the concept of Industry 5.0. The measurement of companies' maturity follows a three-step procedure that easy to use and can be done with a software supported tool.

How to cite: E-ISSN: Published by:

Figure 3.2 Procedure to assess Industry 5.0 maturity

Maturity evaluation will be using a Likert-scale reaching from 1 -"Level 0" to 4 -"Level 3". The responses data from the questionnaire will be inputted to the software tool and calculated with formula in Equation 1 as follows.

	M: Maturity
	D: Dimension
$\sum_{i=1}^{n} M_{DIi} \times g_{DIi}$	I: Item
$M_D = \frac{\sum_{i=1}^n q_{Dii}}{\sum_{i=1}^n q_{Dii}}$	g: Weighted Factor
$\mathbf{L}_{l=1}$ o bh	n: Number of Maturity Item
The moturity loyal (M-) of a	ab dimonsion is the results there the

The maturity level (M_D) of each dimension is the results from the weighted average calculation of all maturity items (M_{Dli}) in each dimension. Then the average importance rating from all respondent resulting the weighting factor (g_{Dli}) .

(1)

RESULT AND DISCUSSION

Measurement Items based on Maturity Model

The authors completed an analysis process with three separate steps. An early phase to establish a thorough knowledge of Industry 5.0, then a core phase to develop and construct the model's structure as well as a practically helpful tool, and an implementation phase to test the resultant tool in actual use are all necessary. The authors suggested 11 maturity elements as a model that are categorized into three pillar dimensions in order to simplify various evaluations of Industry 5.0 maturity. Table 4.1 gives an overview of the dimensions and some concrete examples to help with comprehension.

The company's maturity through its maturity items is evaluated using a standardized questionnaire with one closed-ended question for each item. On a Likert scale with 1 being "not implemented" and 4 being "completely implemented," each question requires a response. For instance, the question in Table 4.1 for the item "Main driver and innovative factor for Industry 5.0" in the dimension "Human-centered Design" reads as follows.

How would you assess the maturity of your company's main driver and innovative factor for Industry 5.0?

- 1) No collaboration between employees and new technology.
- 2) The company is trying to make collaboration between employees and new technology
- 3) The employees can collaborate with the new technology or robots.
- 4) Collaboration between employees and new technology is already running well.

The software program will then use the questionnaire responses as data input to compute and illustrate the maturity level.

			Table 4.1	l Maturity	y Items for Matu	rity Asses	ssment	
Measureme	nt Categories	Level 0		Level 1		Level 2	Level 3	
	Main driver and innova- tive factor for 15.0	MDIF0	No collabo- ration be- tween em- ployees and new tech- nology.	MDIF1	The company is trying to make collabo- ration be- tween em- ployees and new technol- ogy	MDIF2	The employees can collaborate with the new tech- nology or robots	Collaboration be- tween employees and new technol- ogy is already running well
Human- centered Design	Focus on em- ployees	FOE0	No im- provement in technol- ogy and study the needs of employees.	FOE1	The company has started to improve to maximize technology and study the needs of em- ployees	FOE2	The company has developed tech- nology enhance- ments to under- stand the needs of employees	The company have been able to recognize what technology can do for the people and focus on how technology can adjust to the re- quirements of the worker instead of the other way
	Holistic Ad- aptation of the processes and system to employees	HAPS0	No study about rela- tion be- tween em- ployees and	HAPS1	Trying to study the skill gap between each em- ployee to	HAPS2	Have been able determine the skills gap between HAPS3 employees and new technology,	Provide training for every skill re- quirement to build good collabora- tion between
How to cite: E-ISSN: Published by:	Mikhael Char A Maturity M 4355-4374 2775-3727 https://gree	ndra Arta et Iodel For Inc npublisher.i	al. (2024). Indus lonesian Compar <u>d/</u>	try 5.0 Read nies <i>. Journal</i>	liness Assessment: <i>Eduvest.</i> 4 (5):			

Table 4.1 Maturity Items for Maturity Assessment									
Measureme	ent Categories	Level 0		Level 1		Level 2		Level 3	
			new tech- nology.		build a good adaptation be- tween em- ployees and new technol- ogy		so the company able to make fore- cast the skills needs		employees and new technologies in the future
	Basic re- quirement for achieving maturity lev- els for digital- ization and AI	BR0	No support- ing technol- ogy.	BR1	The company has started build some supporting technology, such as big data, network coverage and specialist skills for use new technol- ogy in the fu- ture	BR2	The company has developed build some supporting technology, such as big data, net- work coverage and specialist skills for use new technology in the future	BR3	The company al- ready have the supporting tech- nology, such as big data, network coverage and spe- cialist skills for use new technol- ogy in the future
Resiliency	Stabilization Policy	SP0	No policy.	SP1	Policy is taken randomly and reacts to mar- ket condi- tions.	SP2	The stabilization policy has been well formulated and structured but is still focused on reacting to market conditions. There	SP3	The stabilization policy has been well integrated into overall eco- nomic policy and has been carried out in a proactive

			Table 4.1	l Maturity	Items for Matu	rity Asses	sment		
Measureme	nt Categories	Level 0		Level 1		Level 2		Level 3	
							is no clear long- term strategy.		and effective manner. There is a continuous evalu- ation and im- provement mech- anism to increase the effectiveness of the stabiliza- tion policy.
	Creation of Competitive- ness	CC0	The com- pany is not aware of the Industry 5.0.	CC1	The company start to aware of the defini- tion and con- cept of Indus- try 5.0.	CC2	The company has developed a strat- egy to leverage In- dustry 5.0 for competitiveness, but it is not yet fully integrated into its operations.	CC3	The company has fully integrated Industry 5.0 into its strategy and operations, and it regularly measures and manages its per- formance in this area
	Use of Mod- ern Technol- ogies and Ap- proaches	UMTA0	No modern technolo- gies or ap- proaches are used in	UMTA1	The company start to study modern tech- nologies or approaches to	UMTA2	A few modern technologies and approaches are used, and their in- tegration into the	UMTA3	Most modern technologies and approaches are used in the manu- facturing process,
How to cite: E-ISSN: Published by:	Mikhael Char A Maturity M 4355-4374 2775-3727 https://green	ndra Arta et odel For Ind	al. (2024). Indus Ionesian Compar <u>1/</u>	try 5.0 Read nies <i>. Journal</i>	iness Assessment: Eduvest. 4 (5):				

			Table 4.1	l Maturity	y Items for Matu	irity Asses	sment		
Measurem	ent Categories	Level 0		Level 1		Level 2	L	Level 3	
			manufac- turing pro- cesses.		be used in manufactur- ing processes.		manufacturing process is improv- ing. However, they are still used in isolation from each other.	and tion hes mix the for and	d their integra- n is highly co- sive and opti- zed. However, ere is still room t improvement d refinement.
Sustaina- bility	Implementa- tion of envi- ronmental solution	IESO	Organiza- tion have no awareness of environ- mental and society is- sue.	IES1	Organization only give do- nation as a philanthropy	IES2	Organization makes activity based on their stakeholder de- mand (CSR) IF Several programs are done to solve the sustainable is- sue to society	Org gra act ES3 tur bus and go;	ganization inte- ates all of their tivities and cul- re to achieve siness goals d sustainability als
	Business model with sustainable aspects	BMS0	No sustain- ability goals.	BMS1	Company has bad image to society Employee does not know about the	BMS2	Organization feels it has tried to give best benefit to em- ployee, but the employee does not B feel any benefit from conducting	Org a g soc 3MS3 Org ma bal	ganization has good image in ciety ganization has ade a work life lance working
					company		sustainability	sty plc	byees are loyal

Table 4.1 Maturity Items for Maturity Assessment								
Measurement Categories	Level 0	Level 1		Level 2		Level 3		
			sustainability goals		Some of employee know the com- pany sustainabil- ity goals		All of the em- ployee knows the company sustain- ability goals and make it as a cul- ture	
Involvement in strategy planning	No ISPO tic m	o regula- ons are ISP1 eet	Fulfillment of regulations is done by reac- tive There are no top manage- ment commit- ment to achieve sus- tainability goals	ISP2	All of regulations are identified and fulfilled Company has PIC to make a relation with government to update the regu- lations The organization has the commit- ment to achieve sustainability goals, but there is no review to the achievement	ISP3	The organization is an active mem- ber of association to develop regula- tion The organization goals has been synchronized with government goals about sus- tainability The organization report its achieve- ment of their sus- tainability goals	

	Mikhael Chandra Arta et al. (2024). Industry 5.0 Readiness Assessment:
	A Maturity Model For Indonesian Companies. <i>Journal Eduvest</i> . 4 (5):
How to cite:	4355-4374
E-ISSN:	2775-3727
Published by:	https://greenpublisher.id/

	Table 4.1 Maturity Items for Maturity Assessment								
Measureme	ent Categories	Level 0		Level 1		Level 2		Level 3	
									to all stakeholder annually
					Organization only has eco- nomic per- spectives indi-		Organization has two perspectives indicators: eco-		All of the indica- tors are meet tri- ple bottom line perspectives
	Monitoring of sustaina- bility indica-	a- MSIO Mo perspec- tive of sus- a- MSIO tainability	MSI1 cators to re- view their achievement	nomic and so- cial/environment MSI2 Organization is al-	MSI3	Indicator review is done regularly, and corrective ac-			
	tors		indicators.		Organization is not con- ducting regu- lar review to their indica- tors		ready defined and can be calculated, but still not syn- chronized to their sustainable goals		made when the achievement is below targeted to make sure they still align to com- pany goals

Weighted Factor of Maturity Items

According to the literature, not all factors appear to be equally important for the growth of a business toward maturity in the context of Industry 5.0. In the dimension "Human-centered Design" for instance, the item "Main driver and innovative factor for Industry 5.0" can contribute differently to Industry 5.0 maturity than the item "Focus on employees." The survey of a weighted factor of maturity items was therefore incorporated into the development process to ascertain the item's maturity contribution on the one hand and to confirm the maturity item's practical relevance on the other.

20 respondents take the survey from the questionnaires sent through email to practitioners at several companies. On a Likert scale, the practical value of each maturity factor was graded from "not important" (rating = 1) to "very important" (rating = 4). For instance, the importance of the item "Main driver and innovative factor for Industry 5.0" was given a score of 3.4 out of 4, whilst the importance of the item "Focus on employees" was given a score of 3.2. The aggregate average of the 20 assessments for the 11 elements is 3.1 out of 4, which is consistent with the model's content being significant.

Table 4.2 Weighted Factor of Maturity Items							
Survey for I	Weighted	Factor					
	(g)						
	Main driver and innovative factor for I5.0	3.4					
Uumon	Focus on employees	3.2					
centered Design	Holistic Adaptation of the processes and system to employees	2.8					
	Basic requirement for achieving maturity levels for digitalization and AI	3.6					
Resiliency	Stabilization Policy	3.1					
	Creation of Competitiveness	2.7					
	Use of Modern Technologies and Approaches	3.5					
Sustainabil- ity	Implementation of environmental solution	3.3					
	Business model with sustainable aspects	3.1					
	Involvement in strategy planning	2.8					
	Monitoring of sustainability indicators	3.1					

Table 4.2 Weighted Easten of Maturity It

Maturity Level Calculation

Results from a case study with an Indonesian manufacturing company are shown below. The authors picked a company that is already involved in Industry 4.0 and has the necessary fundamental knowledge and comprehension of its core ideas of Industry 5.0 in order to assure the correctness of the results.

A questionnaire was sent to the organization through email so that they may reflect on their internal situation at their own pace. The software program was then

	Mikhael Chandra Arta et al. (2024). Industry 5.0 Readiness Assessment:
	A Maturity Model For Indonesian Companies. <i>Journal Eduvest</i> . 4 (5):
How to cite:	4355-4374
E-ISSN:	2775-3727
Published by:	https://greenpublisher.id/

used to enter the response and generate the maturity report and determine the maturity levels.

The evaluation and computation of each of the model's eleven dimensions are described in depth in order to improve comprehension of the model's structural elements. The eleven included maturity components, with maturities (M_{DIi}) ranging from 1 to 4 (see Table 4.3), were self-assessed by the firm.

Maturity Ite	m	Company1'sMaturityLevelper Item (M_{Dli})	Weighted Factor (g _{DIi})
	Main driver and innovative factor for Industry 5.0	3	3.4
Human-	Focus on employees	3	3.2
centered Design	Holistic Adaptation of the pro- cesses and system to employees	o of the pro- 3 o employees	
(M_{1Ii})	Basic requirement for achieving maturity levels for digitalization and AI	4	3.55
Resiliency (M _{21i})	Stabilization Policy	2	3.05
	Creation of Competitiveness	2	2.7
	Use of Modern Technologies and Approaches	2	3.5
Sustainabil- ity (M _{31i})	Implementation of environmental solution	4	3.25
	Business model with sustainable aspects	3	3.05
	Involvement in strategy planning	3	2.8
	Monitoring of sustainability indi- cators	3	3.1

Table 4.3 Example of Company's Response for Their Maturity Level per Item

 $(M_{1/1})$ (Main driver and innovative factor for Industry 5.0) = 3; $(g_{1/1}) = 3.4$ $(M_{1/2})$ (Equation (Equation 1) = 3.2

 (M_{1I2}) (Focus on employees) = 3; $(g_{1I2}) = 3.2$

 (M_{1I3}) (Holistic Adaptation of the processes & system to employees) = 3; $(g_{1I3}) = 2.8$

 (M_{1I4}) (Basic requirement for achieving maturity levels for digitalization and AI) = 4; $(g_{1I4}) = 3.55$

 (M_{2I1}) (Stabilization Policy) = 2; $(g_{2I1}) = 3.05$

 (M_{212}) (Creation of Competitiveness) = 2; $(g_{212}) = 2.7$

 (M_{2I3}) (Use of Modern Technologies and Approaches) = 2; $(g_{2I3}) = 3.5$

 (M_{3I1}) (Implementation of environmental solution) = 4; $(g_{3I1}) = 3.25$

 (M_{3I2}) (Business model with sustainable aspects) = 3; $(g_{3I2}) = 3.05$

 (M_{3I3}) (Involvement in strategy planning) = 3; $(g_{3I5}) = 2.8$

 (M_{3I4}) (Monitoring of sustainability indicators) = 3; $(g_{3I4}) = 3.1$

$$\begin{split} M_{1} (Human-centered Design) \\ &= \frac{(M_{1/1} \times g_{1/1}) + (M_{1/2} \times g_{1/2}) + (M_{1/3} \times g_{1/3}) + (M_{1/4} \times g_{1/4})}{g_{1/1} + g_{1/2} + g_{1/3} + g_{1/4}} \\ &= \frac{3 * 3.4 + 3 * 3.2 + 3 * 2.8}{3.4 + 3.2 + 2.8} = \frac{10.2 + 9.6 + 8.4}{9.4} = 3.3 \\ M_{2} (Resiliency) &= \frac{(M_{2/1} \times g_{2/1}) + (M_{2/2} \times g_{2/2}) + (M_{2/3} \times g_{2/3})}{g_{2/1} + g_{2/2} + g_{2/3}} \\ &= \frac{2 * 3.05 + 2 * 2.7 + 2 * 3.5}{3.05 + 2.7 + 3.5} = \frac{6.1 + 5.4 + 7}{9.25} = 2.0 \\ M_{3} (Sustainability) \\ &= \frac{(M_{3/1} \times g_{3/1}) + (M_{3/2} \times g_{3/2}) + (M_{3/3} \times g_{3/3}) + (M_{3/4} \times g_{3/4})}{g_{3/1} + g_{3/2} + g_{3/3} + g_{3/4}} \\ &= \frac{4 * 3.25 + 3 * 3.05 + 3 * 2.8 + 3 * 3.1}{3.25 + 3.05 + 2.8 + 3.1} = 3.3 \end{split}$$

Using the Equation 1, the maturity of the dimension "Human-centered Design" M_1 is now calculated resulting in a maturity-level of 3,3 out of 4; "Resiliency" M_2 resulting in a maturity-level of 2,0 out of 4: and "Sustainability" M_3 resulting in a maturity-level of 3,3 out of 4. The results of determining each respondent's maturity level for each maturity level measuring dimension are as follows. Table 44 Calculated Maturity Level

Respondent	Sector	Human- centered Design	Resiliency	Sustain- ability	Maturity Level (Avg)			
Company 1	Automotive	3.3	2.0	3.3	2.8			
Company 2	Automotive	3.7	2.7	3.7	3.4			
Company 3	Automotive	4.0	4.0	3.7	3.9			
Company 4	Automotive	3.2	3.3	3.2	3.2			
Company 5	Automotive	3.5	4.0	4.0	3.8			
Company 6	Automotive	3.0	2.3	3.0	2.8			
Company 7	Automotive	3.0	2.3	3.0	2.8			
Company 8	Automotive	3.0	2.3	3.2	2.9			
Company 9	Chemicals	2.2	2.3	3.0	2.5			
Company 10	Chemicals	2.0	3.0	3.3	2.7			
Company 11	Chemicals	2.0	2.3	3.0	2.4			
Company 12	Chemicals	2.0	2.3	3.0	2.4			
Company 13	Electronics	2.7	2.7	3.0	2.8			
Company 14	Electronics	2.5	2.6	3.0	2.7			
Company 15	Electronics	2.5	2.3	3.0	2.6			
Company 16	Electronics	2.3	2.0	1.7	2.0			
Company 17	Electronics	1.7	1.7	1.3	1.6			
Company 18	Food & Beverage	2.0	2.0	2.3	2.1			
Company 19	Food & Beverage	2.9	3.2	3.3	3.1			

Table 4.4 Calculated Maturity Level								
Respondent	Sector	Human- centered Design	Resiliency	Sustain- ability	Maturity Level (Avg)			
Company 20	Food & Beverage	2.7	3.0	3.5	3.1			
Company 21	Food & Beverage	3.3	3.0	2.8	3.0			
Company 22	Food & Beverage	1.0	1.7	2.2	1.6			
Company 23	Food & Beverage	3.5	2.7	3.0	3.1			
Company 24	Food & Beverage	2.5	2.7	3.3	2.8			
Company 25	Food & Beverage	3.5	3.3	3.7	3.5			
Company 26	Food & Beverage	2.5	3.0	2.7	2.7			
Company 27	Food & Beverage	2.0	2.3	3.0	2.4			
Company 28	Textile & Apparel	1.5	2.3	2.2	2.0			
Company 29	Textile & Apparel	2.0	2.0	3.0	2.3			

Data Analysis

After processing the data using the maturity model calculation, the next process is to analyze how far the three pillars of Industry 5.0 have been applied in each sector. The following are the results of the analysis, the maturity matrix has defined that there are four levels of maturity. Level 1 describe the industry sector is not ready for implement Industry 5.0. Level 2 describe the industry sector is on initial readiness for implement Industry 5.0. Level 3 describe the industry sector is on medium readiness for implement Industry 5.0. Level 4 describe the industry sector is on ripe readiness for implement Industry 5.0.

Human centered design

Figure 4.1 The human centered design level

Based on the online surveys are processed using the maturity model calculation, the automotive sector is at level 3 for the human centered design matrix. The chemical sector is at level 2 for each item, but at level 1 for basic requirement. The electronic sector is at level 2, the food & beverage is at level 2 as well. The textile & apparel is at level 2, but still at level 1 for main driver and basic requirement for achieving maturity levels for digitalization and AI.

Resiliency

Figure 4.2 The resiliency level

Based on the online surveys are processed using the maturity model calculation, the automotive sector is at level 3, but still at level 2 for creation of competitiveness and use of modern technologies and approaches. The chemical sector is at level 3, but still at level 2 for creation of competitiveness and use of modern technologies and approaches. The electronic sector is at level 2. The food & beverage sector is at level 3, but still at level 2 for creation of competitiveness and use of modern technologies and approaches. The textile & apparel sector is at level 3, but still at level 2 for creation of competitiveness and use of modern technologies and approaches. The textile & apparel sector is at level 3, but still at level 2 for creation of competitiveness and level 1 use of modern technologies and approaches.

Figure 4.3 The sustainability level

Based on the online surveys are processed using the maturity model calculation, the automotive sector is at level 3 and the chemical sector is at level 3 as well. The electronic sector is at level 2 and the food & beverage sector is at level 3, but still at level 2 for implementation of environmental solution and involvement in strategy planning. The textile & apparel sector is at level 3, but still at level 2 for implementation of environmental solution and business model with sustainable aspects.

From that three pillars analysis to ensure which business sector is most ready for implementation of Industry 5.0, the data analysis has been obtained is processed

again using the maturity model calculation. The following are the results of the analysis.

Figure 4.4 The 3 pillars of Industry 5.0 level

Based on the graph above, the automotive sector is at level 3. The chemical sector is at level 3 but still at level 2 for human centered design and resiliency. The electronic sector is at level 2. The food & beverage sector is at level 3 but still at level 2 for human centered design and resiliency. The textile & apparel sector is at level 2 but still at level 1 for human centered design and resiliency.

The business sector is most ready for implementation of Industry 5.0 still can't determine using that analysis because each sector has its own advantages and disadvantages. So, for determine the business sector is most ready for implementation of Industry 5.0 it's done by using kruskal wallis test. The following are the results of the kruskal wallis test.

Descriptive Statistics									
		Ν	Mean	n Std. Deviatio		iation	Minimum		Max
Score		29	2.7241		.56420 1		.60		
Industry		29	2.7931		1.3	7267	1	.00	
Kruskal-Wallis Test									
			Ranks	_				,	
	Indu	stry		L	N	Mean	Rank		
Score	Auto	motives			8		20.38		
	Chemicals				4		7.75		
	Electronics				5		7.90		
Food and Beverages				10		14.45			
Total					27				
Test	Statis	tics ^{a,b} Score							
Chi-squ	are	10.73	14						
df			3						
Asymp.	Sig.	.01	3						
a. Kr Test	uskal	Wallis							
b. Gr Varia	oupin ble: Ir	g ndustry							

Figure 4.5 The result of kruskal wallis test

Based on the result from Kruskal Wallis test, there are two results. First one is descriptive analysis, from 29 samples the minimum level of maturity level is 1.6 and maximum level is 3.9 with the standard deviation at 0.56.

The automotive sector get the best mean rank score. Meanwhile the food and beverages sector get the lowest mean rank score. The significant level is 0.013

Industry 5.0 Readiness Assessment: A Maturity Model For Indonesian Companies

which is lower than 0.05 that it means there are differences between each sector. So we can conclude that the automotive sector is the most ready for industry 5.0.

CONCLUSION

The research work presented here aimed for the development of a maturity model and a related tool for assessing the Industry 5.0 maturity of industry sector in Indonesia. The mmaturity model can assist with the difficult task of reflecting on the current capabilities regarding Industry 5.0 and the subsequent decision on respective strategies and action plans to be ready for the implementation of Industry 5.0. Based on the research result, the business sector which most ready for the implementation of Industry 5.0 is automotive sector. But it's on level 3 (medium readiness) and still needs development to get to level 4 (ripe readiness).

REFERENCES

- Adel, A. (2022). Future of industry 5.0 in society: human-centric solutions, challenges and prospective research areas. *Journal of Cloud Computing volume*.
- Aditya Akundi, D. E. (2022). State of Industry 5.0—Analysis and Identification of Current. *applied system innovation*, *5*, 27.
- Aries Kurniawan, B. D. (2019). PREPARATION AND CHALLENGES OF INDUSTRY 5.0 FOR SMALL AND MEDIUM ENTERPRISES IN INDONESIA. Economics and Business, 2, 155-160.
- Blanchard, O., & Perotti, R. (2002). An empirical characterization of the dynamic effects of changes in government spending and taxes on output. *The Quarterly Journal of Economics*, 117(4), 1329-1368.
- Borio, C., Furfine, C., & Lowe, P. (2011). Procyclicality of the financial system and financial stability: issues and policy options. *BIS Papers*, (1), 1-57.
- Breque, M. D. (2021). Industry 5.0: towards a sustainable, human-centric and resilient European industry. LU: European Commission, Directorate-General for Research and Innovation.
- Breque, M., De Nul, L., & Petridis, A. (2021). *Industry 5.0: Towards a sustainable, humancentric and resilient European industry*. European Comission.
- Duggal, A. S.-A. (2022). A sequential roadmap to Industry 6.0:. IET Communications, 16(5), 521-531.
- Erik Skov Madsen, A. B. (2016). Industry 4.0 and digitalization call for vocational skills, applied industrial engineering, and less for pure academics. *5th World Conference on Production and Operations Management*. Cuba.
- Franziska Hein-Pensel, H. W.-W. (2023). Maturity assessment for Industry 5.0: A review of existing maturity models. *Journal of Manufacturing Systems*, 200-210.

- Friedman, M. (1968). The Role of Monetary Policy. *The American Economic Review*, 58(1).
- G. Culot, G. N. (2020). Behind the definition of Industry 4.0: analysis and open question. *International Journal of Production Economics*, 226.
- John Burgess, K. D. (2020). The challenges of human resource development in Indonesia. In *Developing the Workforce in an Emerging Economy* (p. 17). Taylor & Francis Group.
- K. Vinitha, R. A. (2020). Review on industrial mathematics and materials at Industry 1.0 to Industry. *Materials Today: Proceeding*, *33*, 3956-3960.
- Kementrian Perindustrian Republik Indonesia. (2018). *Indonesia Industry 4.0 Readiness Index*. Indonesia: Kementrian Perindustrian Republik Indonesia.
- Keynes, J. (1936). The General Theory of Employment, Interest and Money. *Palgrave Macmillan*.
- Kiss, A. A. (2022). Industry 4.0 as a Challenge for the Skills and Competencies of. *Sci*, *4*, 34.
- Longo, F. N. (2017). Smart operators in industry 4.0: A human-centered approach to enhance operators. *Computers & industrial engineering*, *113*, 144-159.
- Made Krisna Dinata, N. A. (n.d.). ALTERNATING SITTING-STANDING POSTURE DECREASE FATIGUE, MUSCULOSKELETAL COMPLAINT AND INCREASE PRODUCTIVITY OF IRONING WOMEN WORKER IN HOUSEHOLD. Denpasar: Program Studi Ergonomi-Fisiologi Kerja, Program Pascasarjana Udayana University.
- Malte Brettel, N. F. (2014). How Virtualization, Decentralization and Network. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8 (1), 37-44.
- Mariia Golovianko, V. T. (2023). Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid. *Proceedia Computer Science*, 217, 102-113.
- Nahavandi, S. (2019). Industry 5.0 A Human-Centric Solution. *Sustainability*, *11*, 4371. Retrieved from https://doi.org/10.3390/su11164371
- Nicoletti, L. a. (2022). New perspectives and results for Smart Operators in industry 4.0: A human-centered. *Computers & Industrial Engineering, 163*.
- Ondrej Bastan, T. B. (2018). Resiliency, the Path to Safety II. *IFAC (International Federation of Automatic Control) Hosting by Elsevier*, 468-472.
- Oztemel, E. a. (2020). Literature review of Industry 4.0 and related technologies. *Journal of Intelligent Manufacturing*, 31, 127-182.
- Praveen Kumar Reddy Maddikunta, Q.-V. P. (2022). Industry 5.0: A survey on enabling technologies and potential applications. *Journal of Industrial Information Integration*, 26.

- Rada, M. (2015, December 1). Industry 5.0-from Virtual to Physical. Retrieved April 2, 2023, from LinkedIn: https://www.linkedin.com/pulse/industry-50from-virtual-physical-michael-rada/
- Rahul Sindhwani a, S. A. (2022). Can industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyse enablers. *Technology in Society*, 68.
- Romero, D. a. (2021). Towards the resilient operator 5.0: the future of work in smart resilient manufacturing systems. *Procedia*, *104*, 1089-1094.
- Rüsch, E. H. (2017). Industry 4.0 and the current status as well as future prospects on logistics. *Computers in Industry*, 89, 23-34.
- Sasana, H. (2016). Economic Growth of Indonesia: Analysis of Manufacturing Sector. International Journal of Economics, Commerce and Management (IJECM).
- Schumacher, A., Nemeth, T., & Sihn, W. (2018). Roadmapping towards industrial digitalization based on an Industry 4.0. 12th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 18-20 July 2018, 1-6.
- Silalahi, A. (2021). Indonesia and the Transition of 4.0 to 5.0 Industrial: Does Business Adaptable to the Future Changes? doi:10.13140/RG.2.2.17359.41123
- Stahre, D. R. (2021). Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing System. 54th CIRP Conference on Manufacturing Systems, 1089-1094.
- Tao, F., Cheng, Y., Xu, L., Zhang, L., Li, B., & Hu, L. (2019). CCIoT-CMfg: A cloud computing and IoT-based framework for cyber-physical systems in manufacturing. *Journal of Industrial Information Integration*, 13, 49-57.
- Vogt, J. (2021). Where is the human got to go? Artificial intelligence, machine learning, big data, digitalisation, and human–robot interaction. *AI & Society*, *36*, 1083-1087.
- Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. *Journal of Manufacturing Systems*, 37, 517-527.
- Wang, W., & Wang, Y. (2021). Artificial intelligence in manufacturing industry 5.0: A review of recent advances and future trends. *ngineering Applications* of Artificial Intelligence, 104, 104194.
- Weller, C., Kleer, R., & Piller, F. (2015). Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. *International Journal of Production Economics*, 164, 43-56.
- Yao Hu, J. L. (2008). Towards modeling of resilience dynamics in manufacturing enterprises: Literature review and problem formulation. 2008 IEEE International Conference on Automation Science and Engineering.

- Yu, S. P. (2017). On the way from Industry 4.0 to Industry 5.0: from digital manufacturing to digital society. *International Scientific Journals*, 2, 307-311.
- Zizic, M. C., Mladineo, M., Gjeldum, N., & Celent, L. (2022). From Industry 4.0 towards Industry 5.0: A Review and Analysis of Paradigm Shift for the People, Organization and Technology. *Energies* 2022, 1-21.