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ABSTRACT 

Objective: The purpose of this research was to evaluate and select the best architecture 
among native convolutional neural network (CNN), MobileNetV2, ResNet50V2, and 
EfficientNetB0 for predicting the endpoint of the high shear wet granulation process, with 
accuracy as the main evaluation metric. Methods: The dataset was captured from an 
industrial camera using static image analysis and was manually labeled as “NOT READY” 
and “READY” according to the traditional endpoint method based on the mixer’s ampere 
point in the granulator. The dataset contained a total of 180 images, which were split 
between training and validation sets. Native CNN and TensorFlow Keras application 
programming interface (API) were utilized with MobileNetV2, EfficientNetB0, and 
ResNet50V2 as base feature encoders. Hyperparameters, such as final Fully Connected (FC) 
layer width, dropout rate, and learning rate, were optimized for binary classification using 
Keras hyper tuning. Results: The best was the native CNN, it was also the fastest among the 
three other models, taking only 20-30 ms per step for inference during runtime, though it 
requires 9000 ms time for training, the longest time among the models. It achieved an 
accuracy of 98%, and a validation accuracy of 97%. Conclusion: The system was able to 
determine when a wet granulation process has reached its endpoint based on live images 
from a camera after being trained on previously labeled data. The native CNN was the best 
model, offering the fastest runtime performance and the highest accuracy. 

KEYWORDS Wet Granulation, Image Processing, Deep Learning, Image-based 
inspection, MobileNetV2, EfficientNetB0, ResNet50V2. 
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INTRODUCTION 

 

In the pharmaceutical industry, optimizing and ensuring the reproducibility of 

critical and sensitive processes is a top priority to guarantee product quality, 

consistency, and efficiency. Among these processes, wet granulation is a crucial step 

in the production of many solid tablet products. Wet granulation is a critical and 

challenging step in the solid tablet manufacturing process, particularly difficult to 

reproduce and scale up from research and development environments (Singh, 

Shirazian, Ranade, Walker, & Kumar, 2022). Most granulation processes are controlled 

through a fixed process condition such as the mixer current or mixer torque and are 

ultimately inspected manually through visual assessment by the operator. Image 

Processing is one of twelve methods available for inline monitoring in wet granulation. 

It is the most direct technique to monitor granule growth during the granulation process, 

however, a significant challenge of this method is frequent fouling of image capture 

equipment during the granulation (B. Liu et al., 2021).  

The advancement in computational capabilities of image processing with deep 

learning algorithm has opened new opportunities in pharmaceutical manufacturing 

process, especially for analyzing granule growth or granule size distribution during 

granulation or milling process (Lou, Lian, & Hageman, 2021; Madarász, Mészáros, 

Köte, Farkas, & Nagy, 2023; Millen, Kovačević, Djuriš, & Ibrić, 2020; Yu et al., 2015). 

Image processing can be a versatile tool in the manufacturing and quality control 

methodologies in pharmaceutical industry, with various use cases, including 

controlling granule growth during granulation process (Farkas, Madarász, Nagy, Antal, 

& Kállai-Szabó, 2021; Mäki-Lohiluoma et al., 2021). The main challenge of applying 

deep learning-based image processing in granulation process is computational speed, 

as image capture and processing to predict endpoints must occur in real-time. 

Therefore, it is crucial to choose the optimal deep learning architecture for real-time 

performance. Native Convolutional Neural Network (CNN) architecture is widely used 

with good result for the abstract images (Amalia, Bustamam, & Sarwinda, 2021; Z. Liu 

et al., 2021; Sudarsono, Bustamam, & Tampubolon, 2020; Zhao et al., 2019). Three 

well-known models available in TensorFlow Keras Application Programming 

Interface (API) can handle resource-constrained environment with good performance: 

MobileNetV2 (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018), ResNet50V2 

(Bustamam et al., 2021; He, Zhang, Ren, & Sun, 2016a; Sarwinda, Paradisa, 

Bustamam, & Anggia, 2021; Triyadi, Bustamam, & Anki, 2022), and EfficientNetB0  

(Razi, Bustamam, & Latifah, 2023; Tan & Le, 2019) .  

MobileNetV2 known for its efficiency, is particularly suitable for resource-

constrained environments. ResNet50V2 with its deeper architecture, is renowned for 

its ability to handle complex hierarchical features. EfficientNetB0 leveraging 

https://creativecommons.org/licenses/by-sa/4.0/
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compound scaling to achieve superior performance by balancing model depth, width, 

and resolution. 

The purpose of this research was to evaluate and select the best architecture 

among native CNN, MobileNetV2, ResNet50V2, and EfficientNetB0 for predicting the 

endpoint of the high shear wet granulation process, with accuracy as the primary 

evaluation metric. To address the challenge of data acquisition related to fouling during 

image capturing in the granulation process, an in-process sampling method will be used 

to capture images and investigate the evolution of granule formation (Mahdi, 

Hassanpour, & Muller, 2018). This approach aims to prevent bias in quality of image 

processed with the deep learning architecture and ensure the accuracy of the 

predictions. 

 

RESEARCH METHOD 

 

Materials and Tools 

This research utilized commercially available antacid tablet and the raw materials 

for these tablets which included Magnesium Hydroxide, Magnesium Aluminum 

Hydroxycarbonate, Activated Dimethylpolysiloxane, and several excipients such as 

binder, glidant, and fillers, comprising the mixture composition. All material used in 

this research were generously provided by Kalbe Farma, Indonesia. 

The machine and tools used in this study included a Diosna P60 granulator and a 38-

megapixel Relief M-12 camera for image capture. The processing computer was 

equipped with an Intel Core i7 13th Gen, 16 GB RAM and an NVIDIA GeForce RTX 

4060 8GB graphics card. 

 

Data Collection: 

The granulation process was performed using a Diosna P60 granulation machine, 

and samples were taken every 1 minute for a total runtime 11 minutes. Each sample 

was then imaged using a camera with a resolution of 720 x 540 pixels with 72 dot per 

inch. As the samples were taken, the ampere values were also recorded. Then the 

images then labeled as “NOT READY” or “READY” based on the recorded ampere 

value. 
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Fig. 1. Sample collection and image capturing mechanism. 

 

Model Architecture Selection: 

The model first resized the images to 224 x 224 and rescaled the values to be 

between 1 to 0. For the base image features encoders, pretrained models were used. 

Before encoding, the images passed through a data augmentation layer (only during 

training) and a rescaling layer, depending on the encoder model. After encoding, the 

images were flattened and then passed through a fully connected layer, the width of 

which was optimized using hyperparameter tuning. Finally, the images passed through 

a final single-width fully connected layer. Dropout was used in some of the layers, with 

the dropout rate also being optimized through hyperparameter tuning. 

 

Transfer Learning: 

Transfer learning flow was implemented for MobileNetV2, ResNet50V2, and 

EfficientNetB0, and used the standard setup for transfer learning, only using the frozen 

convolution layers from the pre-trained models and discarding the last fully connected 

layer and adding native fully connected layers to train. 
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Fig. 2 Transfer learning flow 

Model Architectures: 

This research used native CNN, MobileNetV2, ResNet50V2, and EfficientNetB0 

with architecture explain below: 

 

MobileNetV2 

MobileNetV2 is a convolutional neural network (CNN) architecture designed for 

mobile and edge devices. It introduces inverted residuals with linear bottlenecks and 

employs depthwise separable convolutions to reduce computational complexity. The 

network's basic building block is the inverted bottleneck block, composed of a 1x1 

convolution, a depthwise separable convolution, and another 1x1 convolution  (Sandler 

et al., 2018). Skip connections facilitate information flow, and global average pooling 

replaces fully connected layers at the end. The architecture allows for customization 

with width and resolution multipliers, providing flexibility in balancing model size and 

computational cost. Overall, MobileNetV2 is tailored for efficient on-device inference, 

making it suitable for resource-constrained environments. 
Table 1 The MobileNetV2 architecture 

 
 

ResNet50V2 
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ResNet50V2 is a 50-layer variant of the Residual Network architecture (He, 

Zhang, Ren, & Sun, 2016b). It utilizes residual blocks with three convolutional layers, 

including 1x1 projection shortcuts and 3x3 bottleneck convolutions. Residual skip 

connections are present between convolutional layers to facilitate an alternative path 

for data to flow. Batch normalization is applied after each convolutional layer to aid 

training convergence. The architecture ends with global average pooling and a dense 

layer for final predictions. ResNet50V2's design allows for the training of deep 

networks, addressing issues like vanishing gradients and promoting efficient 

information flow during both training and inference. 

 
Fig. 3 The ResNet50V2 architecture 

 

EfficientNetB0 

EfficientNet optimizes CNN efficiency through compound scaling, adjusting 

depth, width, and resolution. It utilizes mobile inverted bottleneck convolutions 

(MBConvs) with depth wise separable convolutions and linear bottlenecks as building 

blocks. A unique compound scaling coefficient balances model size and computational 

cost, resulting in superior performance across resource constraints. The architecture, 

characterized by multiple blocks with different scaling factors (Tan & Le, 2019), has 

gained prominence for its efficiency and effectiveness in various computer vision tasks. 
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Fig. 4 The EfficientNetB0 architecture 

Native CNN 

A small standard architecture network was used for the native CNN, featuring 

only 2 convolution layers, each followed by max pooling. The output was then flattened 

and passed through 2 fully connected layers before reaching the final binary output 

layer. The filter sizes and counts were mostly chosen arbitrarily, while adhering to 

known rules for CNNs, which favor depth over width (Li, 2024). 

 
Figure 5: The native CNN architecture used in this research for binary 

classification of granulation process images. 

Model Training: 

Before the models underwent transfer learning, optimal hyperparameters were 

first searched using the Keras Tuner. All the pretrained models were frozen to act only 

as encoders and were not optimized; only the final fully connected layers were 

optimized using the Adam algorithm. The training was conducted over 100 epochs. 

To improve model generalization, data augmentation techniques such as rotation, 

flipping, and zooming were applied during the training phase. This helped the models 

learn diverse features and perform better on new data. Hyperparameter tuning was 

applied to the transfer learning models (except the native CNN) using the Keras Tuner 
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library, which includes multiple tools for hyperparameter tuning, such as the 

Hyperband algorithm and more. Three hyperparameters of the last two dense layers of 

the transfer learning models were tuned: dropout rate, dense layer units, and optimizer 

learning rate. 

 

Model Evaluation: 

To ensure the robustness of the models, a cross-validation approach was 

considered, splitting the dataset into two sets for training and validation. This process 

helped validate the consistency of model performance across different subsets of the 

dataset. The methodology described above formed the foundation for employing CNNs 

in determining the endpoint of a wet granulation process using machine vision. The 

utilization of transfer learning and hyperparameter optimization contributed to the 

development of a reliable and accurate model for granulation endpoint prediction. 

After training, the images in the test set were used to evaluate the model's 

performance, with accuracy being the primary metric to compare the models and decide 

on the best one. The model's effectiveness in distinguishing between "NOT READY" 

and "READY" granulation states was assessed. Model predictions were categorized 

into true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

outcomes. Accuracy was calculated using the following formula: 
 

Accuracy= (TP + TN) / (TP + FP +TN + FN)   (1)  

 

RESULT AND DISCUSSION 

 

Data Collection 

A total of 180 clean images were collected, with 15 images sampled per minute 

over an 11-minute granulation process. The images had a resolution of 7120 x 5144 

pixels. A sample image captured during the process can be seen in Figure 6 below. 

 

 
Before Granulation After Granulation
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Fig. 6: Sample of images captured before and after the granulation process. 

As the images were evaluated, the formation of granules during the granulation 

process could be observed using the in-process sampling method in the high shear 

granulator [20]. This method successfully addressed the data acquisition challenges 

inherent in the image processing methodology, allowing for a more thorough 

evaluation of the granulation process and the models' performance. 

During the sampling, ampere values were recorded every minute. The recorded 

ampere data is presented in Figure 7 below. 

 
 

Fig. 7 : Ampere recorded during the granulation process. 

 

Since the traditional endpoint of the granulation process is 8.5 amperes, all 

images captured before this value is reached are labeled as "NOT READY," indicating 

that the granulation process has not yet ended. Conversely, all images captured after 

this value is reached are labeled as "READY," indicating that the granulation process 
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has reached its endpoint.

 
 

 

Fig. 8: Image captured and labelled based on ampere value on traditional 

endpoint 

As seen in Figure 8, the final cleaned dataset contains a total of 180 images, split 

between training (139 images) and validation (41 images) sets. The training set consists 

of 69 images labeled as "NOT READY" and 70 images labeled as "READY," while 

the validation set consists of 20 images labeled as "NOT READY" and 21 images 

labeled as "READY." 

 

Model Training 

During the model training and hyperparameter tuning process, several restarts 

were necessary due to issues with plateauing accuracy values and errors. By the end of 

the hyperparameter tuning, the following optimal hyperparameters for each of the 

transfer learning models were identified. 

Table 2: Optimal Hyperparameter 

 
Model Name Dropout rate Layer unit count Learning rate 

MobileNetV2 

224x224 
0.21% 18 0.001 

ResNet50V2 

224x224 
0.34% 32 0.001 

EfficientNet 

224x224 
0.35% 40 0.001 
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After hyperparameter tuning was complete, each of the transfer learning models 

was fully trained with 100 epochs. Since the native CNN model did not undergo 

hyperparameter tuning, its hyperparameters remained fixed. 

 

Model Evaluation 

As seen in Table 3, the native CNN showed excellent performance with a final 

accuracy of 98% and a final validation accuracy of 97%. It had a very fast processing 

speed of only 20–30 ms per inference step but required 9000 ms per training step (this 

may include the validation step, so the actual training step speed may be faster). It was 

followed by MobileNetV2, which achieved a final accuracy of 91% and a final 

validation accuracy of 90%, with slightly slower processing speeds of 34–40 ms per 

inference step and only 650–750 ms per training step. 

ResNet50V2 ranked third, showing a decent validation accuracy of 80% but was 

significantly slower, with 70–80 ms per inference step and 900–1000 ms per training 

step. It experienced some difficulty during the hyperparameter search. EfficientNet was 

particularly challenging during training and hyperparameter tuning, taking 

significantly more time to converge on optimal hyperparameters and parameters while 

also having a speed similar to that of ResNet50V2. 

 

Table 3: Metrics result of models. 
 

Model Name Final 

Accuracy 

Final Val 

Accuracy 

Final 

Sensitivity 

Final Val 

Sensitivity 

Final 

F1 

Score 

Final 

Val F1 

Score 

Runtimes 

live (ms) 

Runtime 

training 

(ms) 

MobileNetV2 

224x224 

91% 90% 0.75 0.99 0.85 0.95 34-40  650-750  

ResNet50V2 

224x224 

84% 80% 0.87 0.99 0.90 0.91 70-80  900-1000  

EfficientNet 

224x224 

73% 80% 0.66 0.95 0.79 0.95 70-80  800-1000  

CNN Native 

224x224 

98% 97% 0.76 0.95 0.84 0.98 20-30  9000  

 

From the data in Table 2, a hypothesis can be drawn as to why the native CNN 

outperformed any transfer learning model. The transfer learning method only trains the 

final fully connected layers of the model while using pre-trained weights for the bulk 

of the feature extraction in the prior CNN layers. These layers are trained on the 

ImageNet dataset, which mostly contains natural images and labels significantly 

different from our dataset of granule images. This difference may induce a bias in the 

model, causing it to have difficulty classifying the images accurately. In contrast, the 

native CNN learns features from scratch, leading to a better fit to our specific dataset. 

 



Eduvest – Journal of Universal Studies 
Volume 4, Number 6, June, 2024  

 

5433   http://eduvest.greenvest.co.id 
 

CONCLUSION 

 

The native CNN, EfficientNet, ResNet50V2, and MobileNetV2 all exhibited 

decent capabilities, with the native CNN standing out for its overall performance across 

multiple hyperparameter tuning trials and its processing speed. The choice of model 

may depend on the specific requirements of the target task, computational resources, 

and dataset characteristics. For this research, the native CNN was the optimal choice 

because resources for the model were relatively limited, and the model needed to have 

low latency to process the live feed from the camera and prevent late stopping of the 

granulation machine. 

In summary, this research advanced endpoint determination in granulation 

processes and provided a practical foundation for integrating CNNs into real-time, 

dynamic image analysis systems in industrial settings. The promising results encourage 

continued efforts to enhance manufacturing processes through efficient and adaptive 

technologies. 
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